HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re - Accredited with A++ Grade by NAAC (3rd Cycle) **Uthamapalayam - 625 533.**

DEPARTMENT OF PHYSICS

BACHELOR OF SCIENCE - PHYSICS

SYLLABUS

Choice Based Credit System - CBCS

(As per TANSCHE/MKU Guidelines)

with

Outcome Based Education (OBE)

(with effect from Academic Year 2023 - 2024 onwards)

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re - Accredited with A++ Grade by NAAC (3rd Cycle) **Uthamapalayam - 625 533.**

College Vision and Mission

Vision

Our vision is to provide the best type of higher education to all, especially to students hailing from minority Muslim community, rural agricultural families and other deprived, under privileged sections of the society, inculcating the sense of social responsibility in them. Our college is committed to produce talented, duty - bound citizens to take up the challenges of the changing times.

Mission

Our mission is to impart and inculcate social values, spirit of service and religious tolerance as envisioned by our beloved Founder President Hajee Karutha Rowther.

The Vision beckons the Mission continues forever.

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re - Accredited with A++ Grade by NAAC (3rd Cycle) **Uthamapalayam - 625 533.**

Department Vision and Mission

Vision

To provide an ambient environment for learning and research in physical science with a focus on academic excellence.

Mission

- To apply conventional and non conventional tools in physics in tune with emerging trends of science.
- To bridge the gap between curriculum based learning and carrier readiness, employability through competitive physics in the competitive world
- ✤ Ignite the students to pursue higher studies and research programs.
- To create a meticulous awareness among students about issues pertaining to welfare of society and environment

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE, UTHAMAPALAYAM

(Reaccredited with "A++" grade by NAAC)

B.Sc., PHYSICS (SEMESTER)

Choice Based Credit System Regulations and Syllabus

(This will come into effect from the academic year 2023 - 24 onwards)

1. INTRODUCTION OF THE PROGRAMME:

Physics is often considered to be the most fundamental science. It is the basis of all other science subjects. It explains natural phenomena in the Universe. A bachelor degree in Physics is a great foundation for career in government jobs, industries, educational institutions, labs etc., Physics brings a broad perspective to any problem. This intensive thinking makes the Physicist desirable in any field. That's why Physics graduates can expect career salaries similar to those of computer science and engineering major.

2. OBJECTIVE OF THE PROGRAMME:

The UG course in Physics helps the students to understand the world around us, the world inside us and the world beyond us. Physics encompasses the study of the universe from the smallest sub atomic particles to the largest galaxies. Moreover it is the basis if many sciences like chemistry, oceanography, seismology and can be applied to a bachelor's degree in physics.

Physics challenges our imagination with concepts like relativity and string theory. It leads to great discoveries like computers and lasers that lead to technologies which change our lives – from healing joints to curing cancer and to develop sustainable energy solutions.

3. OUTCOME OF THE PROGRAMME:

The syllabus for B.Sc., Physics degree under semester system has been designed on the basis of Choice Based Credit System, (CBCS) which would focus on job oriented program and values added education. It will effect from June 2023 onwards. Duration of the course is three years. The students who are joining the B.Sc., (Physics) degree shall undergo a study period of three academic years - Six semesters.

4. OUTCOME OF THE PROGRAMME:

The Syllabus for B.Sc., Physics degree under semester system has been designed on the basis of Choice Based Credit System, (CBCS) which would focus on job oriented program and values added education. It will effect from June 2023 onwards. Duration of the course is three years. The students who are joining the B.Sc., (Physics) degree shall undergo a study period of three academic years – Six Semesters.

While preparing the syllabus, care is taken to provide the requirements of students who opt physics, for developing their skill and competence in their career. Hence after completion of the course, the student will be enriched with recent trends in Physics and be motivated towards higher studies and research activities. During the preparation of the syllabus and curriculum, the UGC model curriculum and syllabi of world best universities were considered.

B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offers courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK									
	FOR								
UNDERGRADUATE EDUCATION									
Programme	B.Sc., Physics								
Programme									
Code									
Duration	3 years [UG]								
Programme	PO1: Disciplinary knowledge:								
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding of								
(These are	one or more disciplines that form a part of an undergraduate programme of								
mere	study								
guidelines.	PO2: Communication Skills:								
Faculty can	Ability to express thoughts and ideas effectively in writing and orally								
create POs	views and express hercelf/himself, demonstrate the ability to listen								
based on their	carefully: read and write analytically and present complex information in a								
curriculum or	clear and concise manner to different groups.								
adopt from UGC	PO3: Critical thinking:								
or the	Capability to apply the analytic thought to a body of knowledge; analyse and								
University for	evaluate the proofs, arguments, claims, beliefs on the basis of empirical								
their	evidences; identify relevant assumptions or implications; formulate coherent								
Programme)	arguments; critically evaluate practices, policies and theories by following								
	scientific approach.								
	PO4: Problem solving:								

Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations.

PO5: Analytical reasoning:

Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyse and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.

PO6: Research-related skills:

A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise causeand-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation

P07: Cooperation/Team work:

Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team

PO8: Scientific reasoning:

Ability to analyze, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO9: Reflective thinking:

Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.

PO10 Information/digital literacy:

Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning:

Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence:

Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning:

Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behavior such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14: Leadership readiness/qualities:

Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right

	destination, in a smooth and efficient way.								
	PO 15: Lifelong learning:								
	Ability to acquire knowledge and skills, including "learning how to learn".								
	that are necessary for participating in learning activities throughout life.								
	through self-paced and self-directed learning aimed at personal								
	development, meeting economic, social and cultural objectives, and adapting								
	to changing trades and demands of work place through knowledge/skill								
	dovelopment/reskilling								
Drogrammo									
Programme	PSUI:								
Specific	Students will have successful professional careers in academics as well as								
Outcomes:	in the public/ private sectors in the field of physics, mathematics and								
	environmental sciences								
	PS02:								
	The students will be capable enough to acquire basic and specialist science								
	skills, their use and incorporation to boost their confident and faith, for								
	effective personal and professional development								
	PS03:								
	Student will be able to gain holistic knowledge about the environment,								
	that is essential for being responsible citizen to protect nature								
	PS04:								
	Students will be equipped with lifelong learning process for self -								
	sustainability employability and leadership roles in our dynamic society								
	PSO5.								
	Students will be provided with value based ethical leadership in								
	professional and social life								

Programme SchemeEligibility

A pass in +2 examination conducted by the Board of Higher Secondary Education, Government of Tamil Nadu or equivalent, with Physics, Mathematics and Chemistry.

For Programme Completion

A Candidate shall complete:

- Part I Language papers Tamil/Arabic in semesters I, II, III and IV respectively
- Part II Language papers English in semesters I, II, III, IV respectively
- Part III Core papers in semesters I, II, III, IV, V and VI respectively
- Part III Elective papers (Discipline / Generic) in semesters I, II, III, IV, V and VI respectively
- Part IV Skill Enhancement Course (NME) papers in semesters I and II respective
- Part IV Skill Enhancement Course papers in semesters I, II, III, and IV respectively
- Part IV Skill Enhancement Course (Foundation Course) paper in semester I respectively
- Part IV Skill Enhancement Course (Professional Competency Skill) in semester VI respect
- Part IV Value Education paper in semester V respectively
- Part IV Environmental Studies paper in semesters III and IV respectively
- Part IV Summer Internship/Industrial Training paper in semester V respective
- Part V Extension activity in semester VI respectively

Scheme of Examinations under Choice Based Credit S	vstem	
Term End Examinations (TEE) Continuous Internal Assessment Examinations (CIAE)	- -	75 Marks 25 Marks
Total	-	100 Marks
Pattern of Continuous Internal Assessment Examin	ations	(CIAE)
Average of Two Internal Tests (each 20 marks)	-	20 Marks
Assignment	-	05 Marks
Total	-	25 Marks

Pattern of Term End Examinations(Max. Marks: 75 / Time: 3 Hours)

External Examinations Question Paper Pattern for Part I & III and Part IV (Elective & Skill Enhancement Course Subject)

Section – A (10 X 1 = 10 Marks) Answer ALL questions.

- Questions 1 10
- Two questions from each UNIT
- Multiple choice questions and each question carries Four choices

Section – B(5 X 7 = 35 Marks)

Answer ALL questions choosing either A or B.

- Questions 11 15
- Two questions from each UNIT (either.... or.... type)
- Descriptive Type

Section – C $(3 \times 10 = 30 \text{ Marks})$

Answer any THREE out of five questions.

- Questions 16 20
- One question from each UNIT
- Descriptive Type

External Examinations Question Paper Pattern for Environmental Studies and Value Education

Section – A: $(5 \times 6 = 30 \text{ Marks})$ Answer ALL questions choosing either A or B.

- Questions 1 5
- Two questions from each UNIT (either.... or.... type)
- Descriptive Type

Section – $B(3 \times 15 = 45 \text{ Marks})$ Answer any THREE out of five questions.

- Questions 6 10
- One question from each UNIT

• Descriptive Type

Part V (Extension Activities)

• Internal Evaluation

Passing Marks

Minimum 27 for External Exam Eligibility for the degree - passing minimum is 40%

Practical Examination

Internal – 40 marks

External – 60 marks

Total – 100 marks

Passing minimum is **40%**

Semester-I

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
	23UTALL11	பொதுத்தமிழ் - 1 தமிழ் இலக்கிய வரலாறு - 1					
Part I	23UARLL11	Paper I : Prose	6	25	75	100	3
	23UMMLL11	Prose, Composition and Translation					
Part II	23UENLL11	General English - I	6	25	75	100	3
	23UPHCC11	Core Theory 1 – Properties of Matter and Acoustics	5	25	75	100	5
Part – III	23UPHCC1P	Core Practical 1 – Physics Practical 1	3	40	60	100	3
	23UMAGE11	Numerical Methods with Applications (Allied Mathematics)	6	25	75	100	4
Dort IV	23UPHSE11	Physics for Everyday Life (SEC-1) (NME)	2	25	75	100	2
Faitiv	23UPHFN11	Foundation Course - Introductory Physics	2	25	75	100	2
	Total		30				22

Semester-II

Course Category	Course Code	Course Title	Hrs	CIAE	TEE	Max Marks	Credits
	23UTALL21	பொதுத்தமிழ் - 2 தமிழ் இலக்கிய வரலாறு - 2	6	25	75	100	3
Part I	23UARLL21 23UMMLL21	Paper II : Grammar Office Communication Malayalam					5
Part II	23UENLL21	General English - II	6	25	75	100	3
	23UPHCC21	Core Theory 2 – Heat, Thermodynamics and Statistical Physics	5	25	75	100	5
Part – III	23UPHCC2P	Core Practical 2 – Physics Practical - 2	3	40	60	100	3
	23UMAGE21	Mathematical Statistics(Allied Mathematics)	6	25	75	100	4
	23UPHSE21	Astrophysics (SEC- 2) (NME)	2	25	75	100	2
Part IV	23UPHSE22	Digital Photography (SEC-3) (Discipline/Subject Specific)	2	25	75	100	2
	Total		30				22

			S		Marks		
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHCC11	Properties of Matter and Acoustics	Core	5	5	25	75	100

	Learning Objectives							
L1	Study of the properties of matter leads to information which	n is of practical						
	It gives us information about the internal forces which act between the							
L2	constituent parts of the substance.							
12	Students who undergo this course are successfully bound	to get a better						
L3	insight and understanding of the subject.							
UNIT	Contents	No. of Hours						
I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses).	15						
II	BENDING OF BEAMS: Cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope	15						
III	FLUID DYNAMICS: <i>Surface tension</i> : definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method– variation of surface tension with temperature <i>Viscosity</i> : definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – correction – terminal velocity and Stoke's formula– variation of viscosity with temperature.	15						
IV	WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance.	15						

	Laws of transverse vibration in strings -sonometer -						
	determination of AC frequency using sonometer-						
	determination of frequency using Melde's string apparatus						
	ACOUSTICS OF BUILDINGS AND ULTRASONICS:						
	Intensity of sound – decibel – loudness of sound –						
	reverberation – Sabine's reverberation formula – acoustic						
V	intensity – factors affecting the acoustics of buildings.	10					
	Ultrasonic waves: production of ultrasonic waves -						
	Piezoelectric crystal method –magnetostriction effect –						
	application of ultrasonic waves						
	PROFESSIONAL COMPONENTS: Expert lectures –						
VI	seminars –webinars – industry inputs – social	5					
	accountability – patriotism						
	Total	75					
		Knowledge					
	Course Outcomes	Level					
CO	On completion of this course, students will						
1	Relate elastic behavior in terms of three moduli of	K1.K2.K3.K4					
	elasticity and working of torsion pendulum.	,,,					
2	Able to appreciate concept of behaving of beams and	K1,K2,K3,K4,					
-	materials.	K5,K6					
	Explain the surface tension and viscosity of fluid and						
3	support the interesting phenomena associated with liquid	K1,K2,K3,K4,					
U	surface, soap films provide an analogue solution to many	K5,K6					
	engineering problems.						
_	apply them Understand the concept of resonance and use	K1 K2 K3 K4					
4	it to evaluate the frequency of vibration. Set up	K5.K6					
	experiment to evaluate frequency of ac mains	-, -					
	Understand the concept of acoustics, importance of						
_	constructing buildings with good acoustics.	K1.K2.K3.K4.					
5	Able to apply their knowledge of ultrasonics in real life,	K5					
	especially in medical field and assimilate different methods of production of ultrasonic waves						
	Textbooks						
1	D.S.Mathur, 2010, <i>Elements of Properties of Matter</i> , S.Chand	and Co.					
2	Brijlaland N. Subrahmanyam, 2003, <i>Properties of Matter</i> , S.Chand and Co.						
3	D.R.Khanna andR.S.Bedi, 1969, <i>Textbook of Sound</i> , AtmaRam	and sons.					
Λ	Brijlal and N.Subrahmanyam, 1995, A Text Book of Sound, s	econd revised					
4	edition Vikas Publishing House.						
5	R.Murugesan,2012, <i>Properties of Matter</i> , S.Chand and Co.						
Reference Books							
1	L.J. SIIIIII, 1960, General Properties of Matter, Urient Longma H.R. Gulati 1977 Fundamental of Conoral Properties of	an Publisners.					
2	edition.S. Chand and Co.	PIULCI , PIIUI					
3	A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-						

	Heinmann India.					
Web Resources						
1	https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-					
1	<u>they-work</u>					
2	http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html					
3	https://www.youtube.com/watch?v=gT8Nth9NWPM					
4	https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s					
Ę	https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-					
5	<u>they-work</u>					
6	https://learningtechnologyofficial.com/category/fluid-mechanics-lab/					
7	http://www.sound-physics.com/					
8	http://nptel.ac.in/courses/112104026/					

CO / PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	2	2	3	2	2	3	2	3
CO 2	2	3	3	3	2	2	3	2	3	3
CO 3	3	2	3	2	3	3	2	3	3	3
CO 4	3	3	3	3	3	2	3	2	2	2
CO 5	2	2	3	3	2	3	3	3	3	2

Strong-3 Medium-2 Low-1

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	2	3	2	3
CO2	2	3	2	3	3
CO3	3	2	3	3	3
CO4	2	3	2	2	2
CO5	3	3	3	3	2

			S	S	Marks		
Course Code	Course Title	Category	Credit	Hours	CIAE	TEE	Total
23UPHCC1P	Physics Practical - 1	Core	3	3	40	60	100

Learning Objectives					
	Apply various physics concepts to understand Properties of Matter, set up				
L1	experimentation to verify theories, quantify and analyse, able to do error				
	analysis and correlate results				
EXPERIMENTS					

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10.Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16.Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

Textbooks

C.L.Arora, 2010, B.Sc Practical Physics, S.Chand and Co.

Brijlaland N. Subrahmanyam, 2003, *Properties of Matter*, S.Chand and Co.

	Knowledge Level	
CO	On completion of this course, students will	
1	Determine the properties of matter like rigidity modulus and to understand the elastic property.	K1,K2,K3,K4
2	Determine the properties of matter like young's modulus and to understand the elastic property.	K1,K2,K3,K4, K5,K6
3	Determine the properties of matter like surface tension and viscosity.	K1,K2,K3,K4, K5,K6
4	Determine the radius of capillary tube by unique method	K1,K2,K3,K4, K5,K6
5	Determine the acceleration due to gravity	K1,K2,K3,K4, K5

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	3	3	2	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	2	3	3	3	3	3	3	2	3
CO4	2	3	3	3	3	2	3	3	3	3
CO5	3	3	2	3	3	3	3	3	3	2

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	3	3
CO2	3	3	3	3	3
CO3	3	3	3	2	3
CO4	2	3	3	3	3
C05	3	3	3	3	2

				S	Marks			
Course Code	Course Title	Category	Credits	Inst. Hou	CIAE	External	Total	
23UMAGE11	Numerical Methods with Applications (Allied Mathematics)	ELECTIVE	4	6	25	75	100	

	Learning Objectives						
L1	To explore the fundamental concepts of Numerical Methods.						
L2	To acquire knowledge about finding approximate ro transcendental and algebraic equations.	ots of t	he				
L3	To improve students' ability to solve Problems in interpolation						
L4	Students are exposed to understanding the concept	of deriva	tives and				
L5	To expose to find Numerical Solutions and their applications.						
UNIT	Contents		No. of Hours				
	Solutions of Transcendental and Algebraic Equations:						
Ι	Iteration method, Bisection method, Newton's method -Reg	ula Falsi	18				
	method, Horner's method(without proof) (Simple problems of	only).					
	Solutions of Simultaneous Equations: Gauss Elimination meth	nod -					
II	Gauss Jordan method – Gauss Seidel Iterative method - Gauss	Jacobi	18				
	method (Restricted to three variables only) (Simple problems only).						
	Interpolation for Equal Intervals: Introduction - Grea	gory					
	Newton's forward and backward formulae -Central different	ence					
	interpolation Formula: Central differences and central						
	difference table – Gauss forward and backward formulae –						
111	Stirling's formula.						
	Interpolation for Unequal Intervals: Introduction Divided D	ifference					
	-Properties of Divided Difference- Theorem (Statemer	nt Only)					
	Lagrange's interpolation formula and inverse interpolation.						
	Numerical Differentiation: Newton's forward Difference and						
w	backward difference formulae to compute the derivatives.						
IV	Numerical Integration: Newton – Cote's formula – Trapezoidal rule –						
	Simpson's 1/3 rd and 3/8 th rules.						
	Applications: Ohm's Law – Kirchoff's Law-Related Problems-						
	Problems using Elimination Method and Iteration method, -						
V Industrial Problems - Finding Eigen values, Resistance Using							
Newton Raphson Methods-Find Area and Volume using Trapezoid							
	Rule and Simpson's Rule - (Related Solved Problems).						
	Total		90				
	Course Outcomes	Knowle	dge Level				
	Un completion of this course, students will	1/1 1/2 1/2					
1	rinu out the approximate roots of transcendental and	KI,KZ,K3	,Ҟ4,ҞჂ,ҞҌ				

	algebraic equations.					
2	Develop the skills of finding roots of simultaneous equations K1,K2,K3,K4,K5,K6					
3	Demonstrate knowledge about interpolation	K1,K2,K3,K4,K5,K6				
4	Carry out calculations of problems related to derivatives and Integrations.	K1,K2,K3,K4,K5,K6				
5	Evaluate Numerical Methods to find Numerical Solutions and their applications in real-life situations.	K1,K2,K3,K4,K5,K6				
	Textbooks					
	P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite different	ences &Numerical				
	Analysis, S.Chand & Company Ltd., New Delhi-55.					
	Unit I: Chanter3					
	Unit II Chapter 4					
1	Unit III. Chapter 4 (Sectione: 616262)					
	Unit III: Chapter 6 (Sections: 6.1,6.2,6.3,)					
	Chapter/(Sections: 7.1-7.5)					
	Unit IV: Chapter 9 (Sections: 9.2,9.3,9.7-9.9,9.13,9.14)					
2	K. Subramani and A. Santha (2017) Numerical Methods Scitech	n Publications (India				
) Pvt Ltd. Unit V: Chapter 6					
	Reference Books					
1	Numerical Methods, T.Veerarajan & T. Ramachandran ,seco	nd edition, Tata Mc				
1	Graw Hill,2006.					
2	Computer- Oriented Numerical Methods, P.Thangaraj,	Prentice Hall of				
2	India,pvt.Ltd,NewDelhi,2008.					
3	Numerical Methods, A. Singaravelu, Meenakshi Publications.					
	Web Resources					
1	https://nptel.ac.in					

Mapping with Programme Outcomes:

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8
CO 1	3	2	3	-	-	-	-	-
CO 2	3	2	3	-	-	-	-	-
CO 3	3	2	3	-	-	-	-	-
CO 4	3	2	3	-	-	-	-	-
CO 5	3	2	3	-	-	_	-	-

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	1	-	-
CO2	3	2	1	-	-
CO3	3	2	1	-	-
CO4	3	2	1	-	-
CO5	3	2	1	-	-

]	Mark	S
Course Code	Course Title	Category	Credits	Hours	CIAE	TEE	Total
23UPHSE11	PHYSICS FOR EVERYDAY LIFE	NME	2	2	25	75	100

	Learning Objectives				
	To know where all physics principles have been put to use in	ı daily	life and		
LI	appreciate the concepts with a better understanding also to know about Indian scientists who have made significant contributions to Physics				
	indian sciencists who have made significant contributions to ri	195105			
UNIT	Contents		No. of Hours		
Ι	MECHANICAL OBJECTS: s pring scales – bouncing balls – coasters – bicycles –rockets and space travel.	roller	6		
II	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses polaroid glasses – UV protective glass – polaroid camera – colo photography – holography and laser.	s – r	6		
III	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier – television – air conditioners – microwave ovens – vacuum clear	ners	6		
IV	SOLAR ENERGY: Solar constant – General applications of sola energy – Solar water heaters – Solar Photo – voltaic cells – Gen applications of solar cells.	r eral	6		
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS: C.V. Ram	an,			
v	V HomiJehangir Bhabha, Vikram Sarabhai, Subrahmanyan Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam				
	and their contribution to science and technology.				
	lotai	Knor	30 wladga		
	Course Outcomes	L	evel		
CO	On completion of this course, students will				
1	Recognize and apply physics principles used in mechanical objects encountered daily.	K1,K	2,K3,K4		
2	Explain the physics behind optical instruments and laser applications in everyday items.	K1,K2 K	2,K3,K4, 5,K6		
3	Understand the functioning and physical principles of household appliances.	K1,K2 K	2,K3,K4, 5,K6		
4	Describe the fundamentals and applications of solar energy.	K1,K2 K1	2,K3,K4, 5,K6		
5	Appreciate the contributions of Indian physicists to the field K1,K2,K3,J				
	Textbooks		-		
1	The Physics in our Daily Lives, Umme Ammara, Gugu cool Publ Hyderabad, 2019.	lishing	,		
2	For the love of physics, Walter Lawin, Free Press, New York, 20	011.			
3					
	Reference Books				

1.	<i>Physics of Everyday Phenomena</i> by W. Thomas Griffith and Juliet Brosing, McGraw-Hill Education, 2014.				
2.	<i>How Things Work: The Physics of Everyday Life</i> by Louis A. Bloomfield, Wiley, 2021.				
3.	Everyday Physics: Modern Classical Physics Made Simple by Jo Hermans,				
_	Leiden University Press, 2012.				
Web Resources					
1.	https://www.physicsclassroom.com/class/circles				
2.	https://www.optics4kids.org/				
3.	https://www.howstuffworks.com/				
4.	https://www.youtube.com/watch?v=zY7QKI1HjaY				

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P010
CO 1	3	2	2	1	3	2	2	3	2	1
CO 2	2	3	3	3	2	1	3	2	3	2
CO 3	3	2	2	1	3	2	3	3	3	1
CO 4	2	3	3	3	1	3	2	2	3	2
CO 5	3	2	1	3	3	3	2	3	3	1

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	2	2	3	2	1
CO2	1	3	2	3	2
CO3	2	3	3	3	1
CO4	3	2	2	3	2
C05	3	2	3	3	1

				s	Marks			
Course Code	Course Title	Category	Credits	Inst. Hour	CIAE	External	Total	
23UPHFN11	Introductory Physics	Foundation Course	2	2	25	75	100	

	Learning Objectives				
	To help students get an overview of Physics before learn	ing their core			
L1	courses. To serve as a bridge between the school curric	culum and the			
	degree programme.				
UNIT	Contents	No. of Hours			
	vectors, scalars –examples for scalars and vectors from				
Ι	physical quantities – addition, subtraction of vectors –	6			
	standard physics constants				
	different types of forces-gravitational electrostatic.				
	magnetic, electromagnetic, nuclear –mechanical forces like.				
II	centripetal, centrifugal, friction, tension, cohesive, adhesive	6			
	forces				
	different forms of energy- conservation laws of momentum,				
III	energy – types of collisions –angular momentum– alternate	6			
	energy sources-real life examples				
	types of motion– linear, projectile, circular, angular, simple				
	harmonic motions – satellite motion – banking of a curved	ć			
IV	comparison of light and sound ways from forced damped	6			
	oscillations				
	surface tension – shape of liquid drop – angle of contact –				
	viscosity –lubricants – capillary flow – diffusion – real life	-			
V	examples- properties and types of materials in daily use-	6			
	conductors, insulators – thermal and electric				
	PROFESSIONAL COMPONENTS: expert lectures –seminars				
VI	-webinars – industry inputs – social accountability –				
	patriotism				
	Total	30 Knowledge			
	Course Outcomes	Level			
СО	On completion of this course, students will				
1	Apply concept of vectors to understand concepts of	K1 K2 K3 K4			
	Physics and solve problems.	,,,			
2	Appreciate different forces present in Nature while	K1,K2,K3,K4,			
-	learning about phenomena related to these different	K5,K6			

fe	orces.	
3 Q n	Quantify energy in different process and relate nomentum, velocity and energy.	K1,K2,K3,K4, K5,K6
4 e b	Differentiate different types of motions they would encounter in various courses and understand their basis.	K1,K2,K3,K4, K5,K6
5 b p	Relate various properties of matter with their behavior and connect them with different physical barameters involved.	K1,K2,K3,K4, K5
	Textbooks	
1 D	S. Mathur, 2010, <i>Elements of Properties of Matter</i> , S.Cl	nand and Co
В	rijlal and N. Subrahmanyam, 2003, Properties of Matte	r, S.Chand
	nd Co.	
i	Reference Books	
H	I.R. Gulati, 1977, <i>Fundamental of General Properties o</i>	f Matter , Fifth
e e	dition, S.Chand and Co.	
	Web Resources	
	ttp://hyperphysics.phy-	
	str.gsu.edu/hbase/permot2.htmlhttps://science.nasa.go	v/ems/
	ttps://eesc.columbia.edu/courses/ees/climate/lectures	<u>/radiation ha</u>
	<u>s/</u>	

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	2	3	2
CO 2	2	3	3	3	2	3	3	2	2	2
CO 3	3	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	2	2	2
CO 5	3	2	3	3	3	3	3	2	2	3
Strong-3	Me	dium-2	2	Low-1	l					

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	3	2
CO2	3	3	2	2	2
CO3	3	3	2	3	2
CO4	3	3	2	2	2
C05	3	3	2	2	3
Strong-3 Medi	um-2	Low-1			

				s	Marks		
Course Code	Course Title	Category	Credits	Inst. Hour	CIAE	External	Total
23UPHCC21	Heat, Thermodynamics and Statistical Physics	Core	5	5	25	75	100

	Learning Objectives							
Ι1	The course focuses to understand a basic in conversion	of temperature						
LI	in Celsius, Kelvin and Fahrenheit scales							
12	Practical exhibition and explanation of transmission of heat in good and							
LZ	bad conductor							
12	Relate the laws of thermodynamics, entropy in everyday life and							
LJ	the knowledge of statistical mechanics and its relation							
UNIT	Contents	No. of Hours						
	CALORIMETRY: specific heat capacity – specific heat							
	capacity of gases C_P and C_{V} – Meyer's relation – Joly's							
	method for determination of Cv - Regnault's method							
т	for determination of C _P	15						
1	LOW TEMPERATURE PHYSICS: Joule-Kelvin effect -	15						
	porous plug experiment – Joule-Thomson effect –Boyle							
	temperature – temperature of inversion – liquefaction of							
	gas by Linde's Process – adiabatic demagnetization.							
	THERMODYNAMICS-I: zeroth law and first law of							
	thermodynamics – P-V diagram – heat engine –efficiency							
II	of heat engine – Carnot's engine, construction, working	15						
	and efficiency of petrol engine and diesel engines -							
	comparison of engines.							
	THERMODYNAMICS-II: second law of thermodynamics							
	-entropy of an ideal gas - entropy change in reversible							
	and irreversible processes - T-S diagram -thermos							
ш	dynamical scale of temperature - Maxwell's thermos	15						
111	dynamical relations -Clasius - Clapeyron's equation	15						
	(first latent heat equation) – third law of							
	thermodynamics – unattainability of absolute zero –							
	heat death.							
	HEAT TRANSFER: modes of heat transfer: conduction,							
	convection and radiation.							
IV	Conduction: thermal conductivity - determination of	determination of						
IV	thermal conductivity of a good conductor by Forbe's	13						
	method – determination of thermal conductivity of a							
	bad conductor by Lee's disc method.							

	Radiation: black body radiation (Ferry's method) -					
	distribution of energy in black body radiation - Wien's					
	law and Rayleigh Jean's law –Planck's law of radiation –					
	Stefan's law – deduction of Newton's law of cooling from					
	Stefan's law.					
	STATISTICALMECHANICS: definition of phase-space –					
	micro and macro states – ensembles –different types of					
	ensembles – classical and quantum Statistics – Maxwell-					
v	Boltzmann statistics – expression for distribution	10				
v	function – Bose-Einstein statistics – expression for	10				
	distribution function – Fermi-Dirac statistics –					
	expression for distribution function – comparison of					
	three statistics.					
	PROFESSIONAL COMPONENTS: Expert lectures -					
VI	seminars – webinars – industry inputs – social	5				
	accountability – patriotism					
	Total	75				
	Course Outcomes	Knowledge				
0)	On completion of this course students will	Level				
	Acquires knowledge on how to distinguish between					
	temperature and heat Introduce him/her to the field of					
	thermometry and explain practical measurements of high					
	temperature as well as low temperature physics. Student					
1	identifies the relationship between heat capacity specific	K1 K2 K3 KV				
1	heat capacity. The study of Low temperature Physics sets	K1,K2,K3,K4				
	the basis for the students to understand cryogenics					
	superconductivity super fluidity and Condensed Matter					
	Dhysics					
	Derive the officiency of Carnet's engine Discuss the					
2	implications of the laws of Thermodynamics in discel and	K1,K2,K3,K4,				
2	natrol angines	K5,K6				
	Able to analyze performance of thermodynamic systems					
2	viz officioncy by problems Cots an insight into	K1,K2,K3,K4,				
5	thermodynamic properties like onthalpy ontropy	K5,K6				
	Study the process of thermal conductivity and apply it to					
	study the process of thermal conductivity and apply it to					
4	good and bad conductors. Quantify different parameters	K1,K2,K3,K4,				
	norameters and analyse them	кз,ко				
	Informrat classical statistics conconts such as phase space					
1	Interpret classical statistics concepts such as phase space,					
Ę	ensemble, Maxwell-Boltzmann distribution law. Develop	K1,K2,K3,K4,				
5	ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-	K1,K2,K3,K4, K5				
5	ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi- Dirac. Apply to quantum particles such as photon and	K1,K2,K3,K4, K5				

	Textbooks
1	Brijlaland N. Subramaniam, 2000, Heat and Thermodynamics, S.Chand
1	and Co.
2	Narayanamoorthy and Krishna Rao, 1969. <i>Heat</i> , Triveni Publishers,
	Chennai.
3	V.R.Khannaand R.S.Bedi, 1998 1 st Edition, <i>Text book of Sound</i> ,
	Kedharnaath Publish and Co, Meerut.
4	Brijlal and N. Subramanyam, 2001, <i>Waves and Oscillations,</i> Vikas
1	Publishing House, New Delhi.
5	Ghosh, 1996, <i>Text Book of Sound</i> , S.Chand and Co.
6	R.Murugesan and Kiruthiga Siva prasath, <i>Thermal Physics</i> , S.Chand and Co.
	Reference Books
1	J.B.Rajamand C.L.Arora, 1976, <i>Heat and Thermodynamics</i> , 8 th edition,
L	S.Chandand Co. Ltd.
2	D.S.Mathur, Heat and Thermodynamics, Sultan Chand and Sons
3	Gupta, Kumar, Sharma, 2013, <i>Statistical Mechanics</i> , 26th Edition, S. Chand
5	and Co.
4	Resnick, HallidayandWalker,2010, <i>Fundamentals of Physics</i> , 6 th Edition.
5	Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021 University
5	<i>Physics with Modern Physics</i> , 15 th Edition, Pearson.
	Web Resources
1	https://youtu.be/M_5KYncYNyc
2	https://www.youtube.com/watch?v=4M72kQulGKkandvl=en
2	Lecture 1: Thermodynamics Part 1 Video Lectures Statistical Mechanics I:
5	Statistical Mechanics of Particles Physics MIT OpenCourseWare
4	http://www.freebookcentre.net/Physics/Physics-Books-Online.html

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	2	3	2
CO 2	2	3	3	3	2	3	3	2	2	2
CO 3	3	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	2	2	2
CO 5	3	3	2	3	3	3	2	2	3	2
Strong-3	M	edium-	2	Low-	1					

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	3	2
CO2	3	3	2	2	2
CO3	3	3	2	3	2
CO4	3	3	2	2	2
CO5	3	2	2	3	2
Strong-3	Medium-2	Low-1			

				S.	Marks			
Course Code	Course Title	Category	Credits	Inst. Hour	CIAE	External	Total	
23UPHCC2P	Physics Practical - 2	Core	3	3	40	60	100	

	Learning Objectives
A	Apply their knowledge gained about the concept of heat and sound
I 1	waves, resonance, calculate frequency of ac mains set up
e	experimentation to verify theories, quantify and analyse, able to do
e	error analysis and correlate results.
	HEAT, OSCILLATIONS, WAVES AND SOUND
	EXPERIMENTS
Minimum of	Eight Experiments from the list:
1. Determina	ation of specific heat by cooling – graphical method.
2. Determina	ation of thermal conductivity of good conductor by Searle's method.
3. Determina	ation of thermal conductivity of bad conductor by Lee's disc method.
4. Determina	ation of thermal conductivity of bad conductor by Charlaton's
method.	
5. Determina	ation of specific heat capacity of solid.
6. Determina	ation of specific heat of liquid by Joule's electrical heating method
(applying	radiation correction by Barton's correction/graphical method),
7. Determina	ation of Latent heat of a vaporization of a liquid.
8. Determina	ation of Stefan's constant for Black body radiation.
9. Verificatio	on of Stefan's-Boltzmann's law.
10. Determina	ation of thermal conductivity of rubber tube.
11. Helmholtz	z resonator.
12. Velocity o	of sound through a wire using Sonometer.
13. Determina	ation of velocity of sound using Kunds tube.
14. Determina	ation of frequency of an electrically maintained tuning fork.
15. To verify	the laws of transverse vibration using sonometer.
16. To verify	the laws of transverse vibration using Melde's apparatus.
17. To compa	are the mass per unit length of two strings using Melde's apparatus.
18. Frequency	y of AC by using sonometer.
	Total Hours: 45

Textbooks

C.L.Arora, 2010, B.Sc Practical Physics, S.Chand and Co.

Brijlaland N. Subrahmanyam, 2003, *Properties of Matter*, S.Chand and Co.

	Course Outcomes						
CO	On completion of this course, students will						
1	Determine thermal conducting property of a bad conductor	K1,K2,K3,K4					
2	Determine the specific heat and latent heat capacity by various method	K1,K2,K3,K4, K5,K6					
3	Determine the velocity sound.	K1,K2,K3,K4, K5,K6					
4	Determine the radius of capillary tube by unique method.	K1,K2,K3,K4, K5,K6					
5	Determine the frequency of alternating current source.	K1,K2,K3,K4, K5					

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

CO /PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	3	3	2	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	2	3	3	3	3	3	3	2	3
CO4	2	3	3	3	3	2	3	3	3	3
CO5	3	3	2	3	3	3	3	3	3	2
Strong-	3	Med	ium-2	L	ow-1	-				

Strong-3

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	2	3	3
CO2	3	3	3	3	3
CO3	3	3	3	2	3
CO4	2	3	3	3	3
C05	3	3	3	3	2
Character 2 Mad		Lavy 1			

Strong-3

Medium-2

Low-1

				S	Marks		
Course Code	Course Title	Category	Credits	Inst. Hou	CIAE	External	Total
23UMAGE21	Mathematical Statistics (Allied mathematics)	ELECTIVE	4	6	25	75	100

	Learning Objectives								
11	To expose the topics such as Collection of Data , classification and								
LI	Tabulation.	Tabulation.							
L2	To gain knowledge of Measures of central Tendency.								
12	To acquire the knowledge of solving Mean, Median, Mo	de, Inde	x Numbers						
LO	and concepts of probability.								
UNIT	Contents		No. of Hours						
	Collection of Data Techniques: Primary and secondary	data -							
	Primary methods of data collection –Drafting Question	s and							
	questionnaires - Sources of secondary data -Editing pri	mary							
т	data- Editing secondary data.								
1	Classification and Tabulation: Introduction, Classificati	on,	18						
	Organizing Quantitative Data, Selecting Class Intervals	Two	10						
	way Frequency Distribution, Cumulative Frequencies,	Гуреѕ							
	of Tables.	of Tables.							
	Measures of Central Tendency: The arithmetic Mean-								
II	Properties-Shortcut Method-Weighted arithmetic Mean	1-	18						
	Quartile -Deciles and Percentile-Median-Mode.								
	Measures of Dispersion: The Range, Quartile Deviation-	-Mean							
тт	Deviation-Standard Deviation- Calculation of standard		10						
111	deviation by short cut method- Variance and coefficien	t of	10						
	variation.								
	Index Numbers: Introduction, Weighted Average of Act	ual	10						
IV	Prices-Price Relative Method-Quantity Index Numbers-	-	18						
1 V	Mathematical Test of consistency-Fixed and Chain Base	e Index							
	Numbers-Consumer Price Index Numbers.								
	Probability: Introduction - Addition Rule o Probability-								
V	Conditional Probability-Baye's Theorem-Inverse Proba	bility -	10						
v	Permutations and Combinations, Random Variable and								
	Probability Distribution.								
	Total		90						
<u> </u>	Course Outcomes	Knowl	edge Level						
	Find out the Classification data and Table	ע כע וע	2 KA VE VC						
1	rinu out the Glassification udta allu Table.	<u>ΓΙ,</u> ΚΖ,Κ	3,14,13,10						

2	Provide a basic knowledge of measures of central	K1 K2 K3 K4 K5 K6					
2	tendency.	K1,K2,K3,K4,K3,K0					
2	Demonstrate knowledge of solving problems Mean,						
3	Standard Deviation and variance.	К1,К2,К3,К4,К3,К0					
4	Carry out calculations of problems related to Index						
4	Numbers.	К1,К2,К3,К4,К3,К0					
5	Evaluate problems using Probability.	K1,K2,K3,K4,K5,K6					
	Textbooks						
	Introduction to Statistical Methods, C.B. Gupta, Vijay Gu	pta 23 rd Revised					
	Edition, Vikas Publishing House PVT LTD,2004,Reprint	2013					
1	Unit-I: Chapter 5, 6.						
T	Unit-II: Chapter 9.						
	Unit-III: Chapter 10.						
	Unit - IV : Chapter 13.						
	Unit-V: Chapter 16.						
	Reference Books						
1	Statistics, S. Arumugam & Isaac , New Gamma Pub	olishing House, July					
1	2016.						
2	Fundamental of Mathematics, S.C.Gupta & V.K. Kapoor.	Eleventh Edition,					
Ζ	Sultan Chand &Sons publication.						
2	Introduction to mathematical Statistics, Robert .V. Hogg	g &Allen T.Craig,					
3	Collier Macmillan Global Editions.						
	Web Resources						
1	https://nptel.ac.in						

Mapping with Programme Outcomes:

CO /PO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8
CO 1		3	2	3	2	2	3	-	-
CO 2		3	2	3	2	2	3	-	-
CO 3		3	2	3	2	2	3	-	-
CO 4		3	2	3	2	2	2	-	-
CO 5		3	2	3	2	2	3	-	-
Strong_2 Modium_2		ium_2	Lou		•	•	•	•	•

Strong-3 Medium-2

Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	2	2	-	-
CO2	3	2	2	-	-
CO3	3	2	2	-	-
CO4	3	2	2	-	-
CO5	3	2	2	-	-

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	TEE	Total
23UPHSE21	ASTROPHYSICS	NME	2	2	25	75	100

	Learning Objectives					
	This course intends to introduce principles of astrophysics	descril	oing the			
	science of formation and evolution of stars and interpretation o					
L1	heavenly phenomena and provide an understanding of the phy	ysical n	ature of			
	celestial bodies along with the instrumentation and techn	iques	used in			
	astronomical research					
UNIT	Contents		No. of			
	TELESCOPES: Ontical tologgonos magnifying nowor brigh	tnocc	Hours			
	recoluting neuror and f/a ratio transport reflecting and refer	uless,				
Ι	resolving power and f/a ratio – types of reflecting and refracting					
	Lubble anges telescore	pes –				
	Rubble space telescope.	t				
	SULAR SYSTEM: Bode's law of planetary distances – me	teors,	C C			
11	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection					
	of gravitational waves – recent advances in astrophysics.	1				
	ECLIPSES: types of eclipses – solar eclipse – total and partial	solar				
	eclipse – lunar eclipse – total and partial lunar eclipse – transits.					
III	THE SUN: physical and orbital data – solar atmosphere –					
	photosphere – chromosphere – solar corona – prominences –					
	sunspots – 11year solar cycle – solar flares.					
	STELLAR EVOLUTION: H-R diagram – birth and death of low	mass,				
	intermediate mass and massive stars – Chandrasekar limit –	white				
IV	dwarfs – neutron stars – pulsars – black holes – supernovae.		6			
	GALAXIES: classification of galaxies – galaxy clusters –interac	ctions				
	of galaxies, dark matter and super clusters – evolving universe.					
	ACTIVITIES IN ASTROPHYSICS:					
	(i) Basic construction of telescope					
	(ii) Develop models to demonstrate eclipses/planetary motion	1				
V	(iii)Night sky observation		6			
	(iv) Conduct case study pertaining to any topic in this paper					
	(v) visit to any one of the National Observatories					
	Any unee activities to be done compulsionly.		20			
	Total	Knor	3U vlodgo			
	Course Outcomes	L	evel			
CO	On completion of this course, students will					
1	Identify and understand various types of telescopes and	ע 1 ע) K3 K1			
1	their functions.	Π1,ΓΛ	2,N3,N4			
2	Describe the structure and components of the solar system	K1,K2	2,K3,K4,			
<u> </u>	and recent advances in detecting celestial phenomena.	K	5,K6			
3	Explain eclipse phenomena and the physical features of the	K1,K2	2,K3,K4,			

	Sun.	K5,K6				
Λ	Analyze star evolution, galaxy types, and the concept of dark	K1,K2,K3,K4,				
4	matter.	K5,K6				
5	Engage in practical activities related to astrophysical	K1,K2,K3,K4,				
	concepts.	K5				
	Textbooks					
1	Baidyanath Basu, (2001). <u>An introduction to Astrophysics</u> , Se	econd printing,				
	Prentice – Hall of India (P) Ltd, New Delhi					
2	K.S. Krishnaswamy, (2002), <u>Astrophysics – a modern perspe</u>	<u>ctive,</u> New Age				
	International (P) Ltd, New Delhi.					
3	Shylaja, B.S. and Madhusudan, H.R.,(1999) <u>, Eclipse: A Celestia</u>	<u>l Shadow Play</u> ,				
_	Orient BlackSwan,					
	Reference Books					
1.	Dr.A.Mujiber Rahman,(2018) Introduction to Astrophylics, KAMS					
	Publications, Theni					
2.	Carroll, B. W., & Ostlie, D. A. (2017). Introduction to Modern Astrophysics.					
	Pearson, Boston.	des IIninensites				
3.	3. Choudhuri, A. R. (2010). <i>Astrophysics for Physicists</i> . Cambridge Univers					
	Web Desources					
	https://acianao.naco.gov/actronhygics/tachnology/ground.hc	hand				
1.	https://science.nasa.gov/astrophysics/technology/ground-ba	<u>iseu-</u>				
2	https://www.pasa.gov/mission_pages/hubble/main/index.ht	ml				
2.	https://www.nasa.gov/mission_pages/nubble/main/muex.nu					
3.	https://solarsystem.nasa.gov/					
4. F	https://eclipse.gsic.ilasa.gov/					
5.	https://astro.uni.euu/naap/ni/anniation/Spaces Science/					
6.	https://www.esa.int/science_exploration/space_science/					
	https://www.elwandtoloscope.com/astronomy.aguinment/h	ow to build				
7.	wour-own-toloscope/	0w-10-Dulla-				
	your-own-telescope/					

		PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	PO 7	PO 8
CO 1		3	2	3	2	1	3	2	3
CO 2		2	3	3	3	2	1	3	2
CO 3		3	2	3	2	3	2	3	3
CO 4		2	3	3	2	1	3	2	3
CO 5		3	1	2	3	2	3	3	2
Strong-3	Medi	ium-2	Lov	v-1					

Level of Correlation between PSO's and CO's

CO /PO	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	2	3	2	3
CO2	1	3	2	3	2
CO3	2	3	3	2	3
CO4	3	2	3	3	2
C05	3	3	2	3	1
	T	1			

				S	Marks		
Course Code	Course Title	Category	Credits	Inst. Hour:	CIAE	External	Total
23UPHSE22	Digital Photography	Discipline/subject specific (sec-3)	2	2	25	75	100

Learning Objectives							
	To understand the principles of photography and image for	mation and the					
11	science and arts behind it. To understand the essential components of						
LI	conventional and digital cameras and also the different im	age processing					
	techniques.						
UNIT	Contents	No. of Hours					
	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE						
	FORMATION: principle –chemical route and digital route						
	-light, wavelengths, colors – shadows – light intensity and						
I	distance – making light form images –pin-hole images –	6					
	practical limitations to pin-hole images – lens instead of						
	pin-hole – focal length and image size – imaging of closer						
	subjects.						
	LENSES – CONTROLLING THE IMAGES: photographic						
II	lens – focal length and angle of view (problems) – focusing						
	movement – aperture and f-numbers (problems) – depth	6					
	of field- depth of focus - image stabilization - lenses for						
	digital cameras – lens and camera care.						
	CAMERA USING FILMS AND ITS TYPES: camera and its						
	essential components- shutter - aperture - light	6					
111	amera view finder camera. Defley camera single long	6					
	callera – view finder callera – Kellex callera – single fells						
	DICITAL CAMEDAS DDINCIDLE AND TYPES, principle of						
	digital image capturing -comparison of digital and analog						
	nicture information $-$ meganizel $-$ grain noise and nizel						
	density – ontical and digital zooming – image stabilizer –						
IV	hit denth – white balance – color modes – file formats	6					
	(TIFF, RAW and IPEG) – storage cards and types – digital						
	cameras: camera phones – compact camera – hybrid						
	camera – digital SLR.						
	THE DIGITAL IMAGE – POSTPRODUCTION: hardware:						
	computer and its peripherals – software: saving digital file						
V	 basic editing: navigating the image – undo/redo/history 	6					
	– crop – rotate – brightness and contrast – color balance –						
	hue/saturation - dodge/burn - cloning and retouching -						

	removing an element in an image – advanced editin							
	histogram/levels – curves – selection tools: magic wand –							
	printing digital images: inkjet printer – laser printer – dye							
	sub printer – lambda/light jet printers.							
	30							
	Textbooks							
1	Michel J. Langford, Anna Fox and Richard Sawdon	Smith, Basic						
1	<i>photography</i> , 9 th Edn 2010-NL, Focal press, London.							
2	Henry Carroll, Read this if you want to take great photographs of people,							
	Laurence King Publishing.							
	Reference Books							
1	Mark Galer, Digital Photography in Available Light essentia	a l skills , 2006,						
1	Focal press, London.							
2	Paul Harcourt Davies, The Photographer's practical handle	book , 2005, UK						
Z	PRESS.							

	Knowledge Level		
CO	On completion of this course, students will		
1	Learn in depth about types of lenses, their practical usages		
L	and other accessories used in photography	К1,К2,К3,К4	
2	Describe and predict how images are formed and magnified	K1,K2,K3,K4,	
		K5,K6	
3	Appraise types of photographic components like shutter,	K1,K2,K3,K4,	
5	aperture and its types.	K5,K6	
1	Learn in depth about types of picture quality and types of	K1,K2,K3,K4,	
4	storage devices	K5,K6	
Ę	study the image enhancement techniques, image restoration	K1,K2,K3,K4,	
5	procedures and the image compression procedures.	K5	

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	3	3	3	2	3	2
CO 2	2	3	3	3	2	3	3	2	2	2
CO 3	3	3	3	2	3	3	3	2	3	2
CO 4	3	3	3	3	3	3	3	2	2	2
CO 5	3	2	3	3	3	3	3	2	2	3
Strong-3 Medium-2		ım-2	Lo	w-1						

CO /PSO	PS01	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	3	2
CO2	3	3	2	2	2
CO3	3	3	2	3	2
CO4	3	3	2	2	2
CO5	3	3	2	2	3
Strong-3	Medium-2	Low-1			

Level of Correlation between PSO's and CO's