HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.)

Re Accredited with A++ Grade by NAAC (3rd Cycle)

Uthamapalayam, Theni District. Pin Code: 625 533.

DEPARTMENT OF CHEMISTRY

MASTER OF SCIENCE – CHEMISTRY

SYLLABUS

Choice Based Credit System – CBCS

(As per TANSCHE/MKU Guidelines)

with

Outcome Based Education (OBE)

(with effect from Academic Year 2023 - 2024

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re-Accredited with A++ Grade by NAAC (3rd Cycle) **Uthamapalayam - 625 533.**

College Vision and Mission

Vision

Our vision is to provide the best type of higher education to all, especially to students hailing from minority Muslim commUNITy, rural agricultural families and other deprived, under privileged sections of the society, inculcating the sense of social responsibility in them. Our college is committed to produce talented, duty-bound citizens to take up the challenges of the changing times.

Mission

Our mission is to impart and inculcate social values, spirit of service and religious tolerance as envisioned by our beloved Founder President Hajee Karutha Rowther.

The Vision beckons the Mission continues forever.

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.) Re-Accredited with A++ Grade by NAAC (3rd Cycle) **Uthamapalayam - 625 533.**

Department Vision and Mission

Vision

• Generate knowledgeable Chemists and scientists to enhance services to the society.

Mission

- Enable the students to excel in the subject, research and services.
- Elevate students to international standards.
- Encourage the students to take up competitive examinations.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION

	EWORK FOR UNDERGRADUATE EDUCATION
Programme	M.Sc.
Programme Code	
Duration	2 years for PG
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to
	solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all
	organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in
	the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures anda
	global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
Programme Specific	PSO1 – Placement
Outcomes(PSOs)	To prepare the students who will demonstrate respectful engagement with
Outcomes(130s)	others' ideas, behaviors, beliefs and apply diverse frames of reference to
	decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking, problem
	solving, decision making and leadership skill that will facilitate startups and
	high potential organizations.
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in research that
	comply with employment laws, leading the organization towards growth and
	development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in the
	dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit.

Programme Scheme

Eligibility

A candidate who has passed B.Sc., Chemistry as the major subject with physics as one allied. The other allied subject may be Mathematics or Botany or Zoology is eligible for the Master of Science – Chemistry Degree.

Duration of the Course:

M.Sc., Chemistry – 2 years (4 Semesters). **Medium of instruction:** English.

For Programme Completion

A Candidate shall complete:

- Part III Core papers in semesters I, II, III and IV respectively
- Part III Elective papers in semesters I, II, III and IV respectively
- Part IV Non- Major Elective papers in semester II and III respectively
- Part IV Skill Enhancement Course papers in semester II, III and IV respectively
- Part V Extension activity in semester IV respectively

Scheme of Examinations under Choice Based Credit System

Term End Examinations (TEE)	- 75 Marks
Continuous Internal Assessment Examinations (CIAE)	- 25 Marks
Total	- 100 Marks
Pattern of Continuous Internal Assessment Examinations (CIAE)
Average of Two Internal Tests (each 20 marks)	- 20 Marks
Seminar / Quiz	- 05 Marks

Total

Practical Examination

Internal	– 40 marks
External	– 60 marks
Total	- 100 Marks
Pattern of Term End Examinations	

- 25 Marks

(Max. Marks: 75 / Time: 3 Hours)

External Examinations Question Paper Pattern

Section – A (10 X 1 = 10 Marks)

Answer ALL the questions.

- Questions 1 10
- Two questions from each UNIT

• Multiple choice questions and each question carries Four choices Section – B (5 X 7 = 35 Marks)

Answer ALL the questions, choosing either a or b.

- Questions 11 15
- Two questions from each UNIT (either.... or.... type)
- Descriptive Type

Section – C (3 X 10 = 30 Marks)

- Answer ALL the questions, choosing either a or b.
- Questions 16 18
- Descriptive Type

Passing Marks

A Candidate passes the M.Sc., Chemistry degree by scoring a minimum of 50% of Marks (internal + external) in each course of the Programme. No minimum marks for internal assessment.

- Minimum 34 Marks (45%) for External Examination in Theory Courses.
- Minimum 27 Marks (45%) for External Examination in Practical

M.Sc., CHEMISTRY

Course Code	First Year Semester-I	Credit	Hours per
			week (L/T/P)
23PCHCC11	CC1 – Organic Reaction Mechanism-I	5	6(5L + 1T)
23PCHCC12	CC2 – Structure and Bonding in Inorganic Compounds	5	6(5L + 1T)
23PCHCC1P	CC3 – Organic Chemistry Practical	4	6(5L + 1T)
23PCHDE11	Elective I (Generic / Discipline Specific) (One from Group A) Nanomaterials and Nanotechnology	4	6(5L + 1T)
23PCHGE11	Elective II (Generic / Discipline Specific) (Onefrom Group B) Electrochemistry	4	6(5L + 1T)
23PCHGE12	Molecular Spectroscopy		
	Total	22	30

Course Code	Semester-II	Credit	Hours per week(L/T/P)
23PCHCC21	CC4 – Organic reaction mechanism-II	5	5(4L + 1T)
23PCHCC22	CC5 – Physical Chemistry-I	5	5(4L + 1T)
23PCHCC2P	CC6 – Inorganic Chemistry Practical	4	6(5L + 1T)
23PCHDE21	Elective III (Generic / Discipline Specific) (Onefrom Group C) Medicinal Chemistry	3	5(4L + 1T)
23PCHGE21	Elective-IV (Computer / IT related) (One from Group D) Bio Inorganic Chemistry	3	5 (4L+ 1 P)
23PCHSE21	Skill Enhancement Course -SEC 1 (One from Group G) Chemistry in everyday life	2	4
	Total	22	30

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PCHCC11	ORGANIC REACTION MECHANISM - I	Core	5	6	25	75	100	

	Learning Objectives	
L1	To understand the feasibility and the mechanism of various organicre	actions.
L2	To comprehend the techniques in the determination of reactionmecha	anisms.
L3	To understand the concept of stereochemistry involved in organicco	ompounds.
L4	To correlate and appreciate the differences involved in the various ty organic reaction mechanisms.	pesof
L5	To design feasible synthetic routes for the preparation of organic compounds.	
UNIT	Contents	No. of Hours
I	Methods of Determination of Reaction Mechanism: Reaction intermediates, The transition state, Reaction coordinate diagrams, Thermodynamic and kinetic requirements of reactions: Hammond postulate. Methods of determining mechanism: non-kinetic methods - product analysis, determination of intermediates-isolation, detection, and trapping. Cross-over experiments, isotopic labelling, isotope effects and stereo chemical evidences. Kinetic methods - relation of rate and mechanism. Effect of structure on reactivity: Hammett and Taft equations. Linear free energy relationship, partial rate factor, substituent and reaction constants.	18
II	Aromatic and Aliphatic Electrophilic Substitution: Aromaticity: Aromaticity in benzenoid, non-benzenoid, heterocyclic compounds and annulenes. Aromatic electrophilic substitution: Orientation and reactivity of di- and polysubstituted phenol, nitrobenzene and halobenzene. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation; Halogen electrophiles: chlorination and bromination; Carbon electrophiles: Friedel-Crafts alkylation, acylation and arylation reactions. Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1- Mechanism and evidences.	18
III	Aromatic and Aliphatic Nucleophilic Substitution: Aromatic nucleophilic substitution: Mechanisms - SNAr, SN1 and Benzyne mechanisms - Evidences - Reactivity, Effect of structure, leaving group and attacking nucleophile. Reactions: Oxygen and Sulphur-nucleophiles, Bucherer and Rosenmund reactions, von Richter, Sommelet- Hauser and Smiles rearrangements. S_N1 , ion pair, S_N2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. S_N1 , S_N2 , S_Ni , and S_E1 mechanism and evidences,	18

	Swain- Scott, Grunwald-Winstein relationship - Ar nucleophiles.	nbident			
IV	Stereochemistry-I: Introduction to molecular symmetric chirality – axis, plane, center, alternating axis of symmetry. isomerism due to asymmetric and dissymmetric molecules with S based chiral centers. Optical purity, prochirality, enantiotog diastereotopic atoms, groups, faces, axial and planar chirality due to helical shape, methods of detert theconfiguration. Racemic modifications: Racemization by the anion, cation, reversible formation, epimerization, mutarotate L system, Cram's and Prelog's rules: R, S-notations, proR, proceeding and re phase Cahn-Ingold- Prelog rules, absolute and re configurations. Configurations of allenes, spiranes, bip cyclooctene, helicene, binaphthyls, ansa and cycloc compounds, exo-cyclic alkylidene-cycloalkanes. Topicity prostereoisomerism, chiral shift reagents and chiral so reagents. Criteria for optical purity: Resolution of reagents. Stereoselective and stereospecific synthesis.	Optical (th C, N, pic and nirality, mining nermal, tion. D, oS, side relative henyls, ophanic y and lvating acemic	18		
v	Stereochemistry-II: Conformation and reactivity of acyclic sy intramolecular rearrangements, neighbouring group particle chemical consequence of conformational equilibrium - HammettPrinciple. Stability of five and six-membered rings: di- and polysubstituted cyclohexanes, conformation and react cyclohexane systems. Fused and bridged rings: bicyclic, poly systems, decalins and Brett's rule. Optical rotation and rotatory dispersion, conformational asymmetry, ORD curves, rule, configuration and conformation, Cotton effect, haloketone rule and determination of configuration.	pation, Curtin- mono-, ivity in z cyclic optical	18		
	Total		90		
	Course Outcomes	_	ramme comes		
<u>CO</u>	On completion of this course, students will	V1 V2			
1 2	Recall the basic principles of organic chemistry.Understand the formation and detection of reactionintermediates of organicreactions.		K3,K4,K5 K3,K4,K5		
3	Predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.	K1,K2,K	3,K4,K5,K6		
4	Apply the principles of kinetic and non-kinetic methods to determine themechanism of reactions. K1,K2,K3,K4,K5,K6				
5	Design and synthesize new organic compounds by correlating thestereochemistry of organicK1,K2,K3,K4,K5,K6 K1,K2,K3,K4,K5,K6compounds.Teacthe class				
	Textbooks				
1	J. March and M. Smith, Advanced Organic Chemistry, 5 th edition Sons.2001.		_		
2	E. S. Gould, Mechanism and Structure in Organic Chemistry, H Winston Inc., 1959.	Iolt,Rineł	nart and		

3	P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, NewAge					
3	International Publishers, 2015.					
4	P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.					
5	J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition,Oxford					
5	University Press, 2014.					
	Reference Books					
1	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-Aand B, 5 th					
1.	^{1.} edition, Kluwer Academic / Plenum Publishers, 2007.					
2.	D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.					
3.	N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.					
4.	E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGrawHill, 2000.					
5.	L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, PearsonEducation Asia,					
5.	2004.					
	Web Resources					
1.	https://sites.google.com/site/chemistryebookscollection02/home/organic-					
1.	<u>chemistry/organic</u>					
2.	https://www.organic-chemistry.org/					

CO /PO)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3 Medium-2			Low-	1							

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Strong-3 Medium-2	Low-1	-			

Course					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHCC12	STRUCTURE AND BONDING IN INORGANIC COMPOUNDS	Core	5	6	25	75	100

	Learning Objectives	
11	To determine the structural properties of main group compour	nds and
L1	clusters.	
L2	To gain fundamental knowledge on the structural aspects of ion	iccrystals.
L3	To familiarize various diffraction and microscopic techniques.	
L4	To study the effect of point defects and line defects in ionic crysta	ls.To
11	evaluate the structural aspects of solids.	
L5	To determine the structural properties of main group compour	nds and
10	clusters.	
UNIT	Contents	No. of Hours
	Structure of main group compounds and clusters: VBtheory	
	– Effect of lone pair and electronegativity of atoms (Bent's rule)	
	on the geometry of the molecules; Structure of silicates -	
	applications of Paulings rule of electrovalence - isomorphous	
	replacements in silicates – ortho, meta and pyro silicates – one	
Ŧ	dimensional, two dimensional and three-dimensional silicates.	10
Ι	Structure of silicones, Structural and bonding features of B-N,	18
	S-N and P-N compounds; Poly acids – types, examples and	
	structures; Borane cluster: Structural features of closo, nido,	
	arachano and klado; carboranes, hetero and metalloboranes;	
	Wade's rule to predict the structure of borane cluster;	
	main group clusters –zintl ions and mno rule.	
II	Solid state chemistry – I: Ionic crystals: Packing of ions in simple, hexagonal and cubic close packing, voids in crystal lattice, Radius ratio, Crystal systems and Bravis lattices, Symmetry operations in crystals, glide planes and screw axis; point group and space group:	18
	point group and space group; Solid state energetics: Lattice energy – Born-Lande equation -	
	Kapustinski equation, Madelung constant.	
	Solid state chemistry – II: Structural features of the crystal	
III	systems: Rock salt, zinc blende & wurtzite, fluorite and anti- fluorite, rutile and anatase, cadmium iodide and nickel arsenide; Spinels -normaland inverse types and perovskite structures. Crystal Growth methods: From melt and solution (hydrothermal, sol-gel methods) –	18
	principles and examples. Techniques in solid state chemistry: X-ray diffraction	
IV	technique: Bragg's law, Powder diffraction method – Principle	18

	technique – principle, instrumentation and application. Electron microso	lation; action copy – oscopy,				
v	Band theory and defects in solids Band theory – features and its application of cond insulators and semiconductors, Intrinsic and ex semiconductors; Defects in crystals – point defects (Sch Frenkel, metal excess and metal deficient) and their eff the electrical and optical property, laser and phosphors; Linear defects and its effects of dislocations.	xtrinsic hottky, fect on	18			
	Total		90			
	Course Outcomes	-	gramme tcomes			
CO	On completion of this course, students will					
1	Predict the geometry of main group compounds and clusters.	K1,K2	,K3,K4,K5			
2	Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.	K1,K2	,K3,K4,K5			
3	Understand the various types of ionic crystal systems and analyze their structuralfeatures.	K1,K2,K	3,K4,K5,K6			
4	Explain the crystal growth methods.	K1,K2,K	(3,K4,K5,K6			
5	To understand the principles of diffraction techniques and microscopic techniques.	K1,K2,K	3,K4,K5,K6			
	Textbooks	1				
1	A R West, Solid state Chemistry and its applications, 2nd Edition), John Wiley & Sons Ltd., 2014.	lEdition(Students			
2	A K Bhagi and G R Chatwal, A textbook of inorganic po Publishing House, 2001.					
3	L Smart, E Moore, Solid State Chemistry – An Introduc CRC Press, 2012.	ction, 4 th]	Edition,			
4	K F Purcell and L C Kotz Inorganic Chemistry W B Saunderscompany					
5	J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Cher Harper and Row: NewYork, 1983.	nistry;4t	h ed.;			
	Reference Books					
1.	D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts Inorganic Chemistry, 3rd Ed, 1994.	s andMoo	lels in			
2.	R J D Tilley, Understanding Solids - The Science of Materials, 2 nd edition, Wiley Publication, 2013.					
3.	C N R Rao and J Gopalakrishnan, New Directions in Sol	id StateC	hemistry,			

	2 nd Edition, Cambridge University Press, 199.
Λ	T. Moeller, Inorganic Chemistry, A Modern Introduction; JohnWiley:
4.	New York, 1982.
	D. F. Shriver, P. W. Atkins and C.H. Langford; InorganicChemistry; 3rd ed.;
5.	Oxford University Press: London, 2001.
	Web Resources
1	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
1.	fall-2018/video_galleries/lecture-videos/

CO /PO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3	Me	edium-2	2	Low-	1						

CO /PSO		PSO1	PSO2	PSO3	PSO4	PSO5
CO1		3	3	3	3	3
CO2		3	3	3	3	3
CO3		3	3	3	3	3
CO4		3	3	3	3	3
CO5		3	3	3	3	3
Strong-3	Medium-2	Low-1				

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PCHCC1P	ORGANIC CHEMISTRY PRACTICAL	Core	4	6	40	60	100	

Learning Objectives						
L1	To understand the concept of separation, qualitative	e analysi	s and			
L1	preparation of organic compounds.					
L2	To develop analytical skill in the handling of chemical reagents for					
12	separation of binary and ternary organic mixtures.					
L3	To analyze the separated organic components system	atically a	ind			
L5	derivatize them suitably.		_			
L4	To construct suitable experimental setup for the organ	nic prepa	arations			
	involving two stages.		-			
L5	To experiment different purification and drying technic	jues for t	the			
15	compound processing.					
UNIT	Contents		No. of			
UNIT			Hours			
_	Separation and analysis:					
I	A. Two component mixtures.		30			
	B. Three component mixtures. Estimations:					
	a) Estimation of Phenol (bromination)					
	b) Estimation of Aniline (bromination)					
	c) Estimation of Ethyl methyl ketone (iodimetry)					
	d) Estimation of Glucose (redox)					
	e) Estimation of Ascorbic acid (iodimetry)					
II	f) Estimation of Aromatic nitro groups (reduction	ו	30			
	g) Estimation of Glycine (acidimetry)	J				
	h) Estimation of Formalin (iodimetry)					
	i) Estimation of Acetyl group in ester (alkalimetry	r)				
	j) Estimation of Hydroxyl group (acetylation)	,				
	k) Estimation of Amino group (acetylation)					
	Two stage preparations:					
	a) <i>p</i> -Bromoacetanilide from aniline					
	b) <i>p</i> -Nitroaniline from acetanilide					
III	c) 1,3,5-Tribromobenzene from aniline		30			
111	d) Acetyl salicyclic acid from methyl salicylate		30			
	e) Benzilic acid from benzoin					
	f) <i>m</i> -Nitroaniline from nitrobenzene					
	<i>g) m</i> -Nitrobenzoic acid from methyl benzoate					
	Total		90			
	Course Outcomes	-	ramme			
		Out	comes			
<u>CO</u>	On completion of this course, students will	V1 V2				
1	Recall the basic principles of organic separation,	<u>Κ1,ΚΖ</u>	K3,K4,K5			

	1					
	qualitative analysis andpreparation.					
2	Explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.	K1,K2,K3,K4,K5				
3	Determine the characteristics of separation of organic compounds by variouschemical reactions.	K1,K2,K3,K4,K5,K6				
4	Develop strategies to separate, analyze and prepare organic compounds.	K1,K2,K3,K4,K5,K6				
5	Formulate a method of separation, analysis of organic mixtures and designsuitable procedure for organic preparations.	K1,K2,K3,K4,K5,K6				
	Textbooks					
1	A R West, Solid state Chemistry and its applications, 2nd Edition), John Wiley & Sons Ltd., 2014.	Edition(Students				
2	A K Bhagi and G R Chatwal, A textbook of inorganic poly Publishing House, 2001.	mers,Himalaya				
3	L Smart, E Moore, Solid State Chemistry – An Introductio Press, 2012.	on, 4 th Edition, CRC				
	Reference Books					
1.	D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts Inorganic Chemistry, 3rd Ed, 1994.	s andModels in				
2.	R J D Tilley, Understanding Solids - The Science of Mate Wiley Publication, 2013.	rials, 2 nd edition,				
3.	C N R Rao and L Gonalakrishnan. New Directions in Solid StateChemistry					
	Web Resources					
1.	https://ocw.mit.edu/courses/3-091-introduction-to-sol chemistry-fall-2018/video galleries/lecture-videos/	lid-state-				

CO /PO)	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	P0 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3	Me	edium-2	2	Low-	1						

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Strong-3 Med	lium-2 Low-	1			

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PCHDE11	NANO MATERIALS AND NANO TECHNOLOGY	Elective	4	6	25	75	100	

	Learning Objectives	
L1	To understand the concept of nano materials and nano technolog	y.
L2	To understand the various types of nano materials and their propunderstand the applications of synthetically important nanomat	erials.
L3	To correlate the characteristics of various nano materials synthe	sized by
L4	new technologies.	
L5	To design synthetic routes for synthetically used new nano mater	
UNIT	Contents	No. of Hours
I	Introduction of nanomaterials and nanotechnologies, Introduction-role of size, classification-0D, 1D, 2D, 3D. Synthesis- Bottom –Up, Top–Down, consolidation of Nano powders. Features of nanostructures, Background of nanostructures. Techniques of synthesis of nanomaterials, Tools of the nanoscience. Applications of nanomaterials and technologies.	18
II	Bonding and structure of the nanomaterials, Predicting the Type of Bonding in a Substance crystal structure. Metallic nanoparticles, Surfaces of Materials, Nanoparticle Size and Properties. Synthesis- Physical and chemical methods - inert gas condensation, arc discharge, laser ablation, sol-gel, solvothermal and hydrothermal-CVD-types, metallo organic, plasma enhanced, and low-pressure CVD. Microwave assisted and electrochemical synthesis.	18
III	Mechanical properties of materials, theories relevant to mechanical properties. Techniques to study mechanical properties of nanomaterials, adhesion and friction, thermal properties of nanomaterials Nanoparticles: gold and silver, metal oxides: silica, iron oxide and alumina - synthesis and properties.	18
IV	Electrical properties, Conductivity and Resistivity, Classification of Materials based on Conductivity, magnetic properties,electronic properties of materials. Classification of magnetic phenomena. Semiconductor materials – classification-Ge, Si, GaAs,SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type semiconductor-Hall effect – quantum and anomalous, Hall voltage – interpretation of charge carrier density. Applications of semiconductors: p-n junction as transistors and rectifiers, photovoltaic and	18

	photogalvanic cell.			
V	Nano thin films, nanocomposites. Application of nanopa in different fields. Core-shell nanoparticles - types, syr and properties. Nanocomposites - metal-, ceramic polymer-matrix composites-applications. Characteriza SEM, TEM and AFM - principle, instrumentatio applications.	nthesis, c- and ntion –	18	
	Total		90	
	Course Outcomes		ramme comes	
CO	On completion of this course, students will			
1	Explain methods of fabricating nanostructures.	K1,K2	K3,K4,K5	
2	Relate the unique properties of nanomaterials to reduce dimensionality of thematerial.	K1,K2	K3,K4,K5	
3	Describe tools for properties of nanostructures.	К1,К2,К	3,K4,K5,K6	
4	Discuss applications of nanomaterials.	K1,K2,K	3,K4,K5,K6	
5	Understand the health and safety related to nanomaterial.	K1,K2,K3,K4,K5,K		
	Textbooks			
1	S.Mohan and V. Arjunan, Principles of Materials Science, 2016.	, MJPPub	lishers,	
2	Arumugam, Materials Science, Anuradha Publications,20	07.		
3	Giacavazzo et. al., Fundamentals of Crystallography, Inte Crystallography. Oxford Science Publications, 2010	rnationa	lUnion of	
4	Woolfson, An Introduction to Crystallography, Cambridg 2012.	eUnivers	ity Press,	
5	James F. Shackelford and Madanapalli K. Muralidhara, In Materials Science for Engineers. 6 th ed., PEARSON Press,		onto	
	Reference Books			
1.	S.Mohan and V. Arjunan, Principles of Materials Se Publishers, 2016.	cience, N	IJP	
2.	Arumugam, Materials Science, Anuradha Publications,20	07.		
3.	Giacavazzo et. al., Fundamentals of Crystallography, In of Crystallography. Oxford Science Publications, 2010	ternation	nalUnion	
4.	Woolfson, An Introduction to Crystallography, Ca University Press, 2012.	mbridge		
5.	James F. Shackelford and Madanapalli K. Muralidhara, Ir Materials Science for Engineers. 6 th ed., PEARSON Press,		onto	
	Web Resources			
1.	http://xrayweb.chem.ou.edu/notes/symmetry.html.			
2.	http://www.uptti.ac.in/classroom-content/data/unit%2	20cell.pd	f.	

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	2	3	3	3	3	2
CO 2	2	3	3	3	3	2	3	3	3	3
CO 3	3	3	2	3	3	3	3	2	3	3
CO 4	2	3	3	3	3	2	3	3	3	3
CO 5	2	3	2	3	3	2	3	2	3	3

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3

						Mark	KS .
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHGE11	ELECTROCHEMISTRY	Elective	4	6	25	75	100

	Learning Objectives	
14	To understand the behavior of electrolytes in terms of condu	ctance,
L1	ionic atmosphere, interactions.	
1.0	To familiarize the structure of the electrical double layer of di	fferent
L2	models.	
L3	To compare electrodes between current density and over potenti	al.
L4	To discuss the mechanism of electrochemical reactions.	
L5	To highlight the different types of over voltages and its applicat	ions in
L9	electroanalytical techniques.	
UNIT	Contents	No. of Hours
Ι	Ionics : Arrhenius theory -limitations, van't Hoff factor and its relation to colligative properties. Deviation from ideal behavior. Ionic activity, mean ionic activity and mean ionic activity coefficient-concept of ionic strength, Debye Huckel theory of strong electrolytes, activity coefficient of strong electrolytes Determination of activity coefficient ion solvent and ion-ion interactions. Born equation. Debye-Huckel Bjerrum model. Derivation of Debye-Huckel limiting law at appreciable concentration of electrolytes modifications and applications. Electrolytic conduction-Debye-Huckel Onsager treatment of strong electrolyte-qualitative and quantitative verification and limitations. Evidence for ionic atmosphere. Ion association and triple ion formations.	18
II	Electrode-electrolyte interface: Interfacial phenomena - Evidences for electrical double layer, polarizable and non- polarizable interfaces, Electrocapillary phenomena - Lippmann equation electrocapillary curves. Electro-kinetic phenomena electro-osmosis, electrophoresis, streaming and sedimentation potentials, colloidal and poly electrolytes. Structure of double layer: Helmholtz -Perrin, Guoy- Chapman and Stern models of electrical double layer. Zeta potential and potential at zero charge. Applications and limitations.	18
III	 Electrodics of Elementary Electrode Reactions: Behavior of electrodes: Standard electrodes and electrodes at equilibrium. Anodicand Cathodic currents, condition for the discharge of ions. Nernst equation, polarizable and non-polarizable electrodes. Model of three electrode system, over potential. Rate of electro chemical reactions: Rates of simple elementary reactions. Butler-Volmer equation- significance of exchange current density, net current density and symmetry factor. Low 	18

and high field approximations symmetry factor and the	ransfer	
	ansiei	
	s of	
multi-step electrode reactions, Butler - Volmer equation a multi-step reaction. Rate determining step, electro- polarization and depolarization. Transfer coefficient significance and determination, Stoichiometric nut Electro-chemical reaction mechanisms-rate express order, and surface coverage. Reduction of I ³⁻ , Fe ²⁺ dissolution of Fe to Fe ²⁺ . Overvoltage - Chemical and e chemical, Phase, activation and concentration over pote Evolution of oxygen and hydrogen at different pH. Pote	on for ctrode ts, its mber. ssions, c, and electro ntials.	18
	Modes	
of Transport of electro active species - Diffusion, migrati hydrodynamic modes. Role of supporting electr Polarography- principle and applications. Principle of wave polarography. Cyclic voltammetry- anodic and ca stripping voltammetry and differential pulse voltam Sodium and lithium-ion batteries and redox flow bat Mechanism of charge storage: conversion and al Capacitors- mechanism of energy storage, charging at co current and constant voltage. Energy production system Cells: classification, alkaline fuel cells, phosphoric actions	on and olytes. square athodic metry. tteries. loying. onstant s: Fuel	18
cells, high temperature fuel cells.		
cells, high temperature fuel cells. Total		90
		90 gramme comes
Total		ramme
Total Course Outcomes	Out	ramme
Total Course Outcomes On completion of this course, students will Find the behaviour of electrolytes in solution and compare the structures of electrical double layer of	Out K1,K2,	comes
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures ofelectrical double layer of different models.Predict the kinetics of electrode reactions applying	Out K1,K2, K1,K2,	ramme comes K3,K4,K5
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamicDifferentiate	Out K1,K2, K1,K2, K1,K2,K	K3,K4,K5
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures ofelectrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics andactivity coefficient of electrolytes Construct storage devices and understand electrochemical reaction mechanism.	Out K1,K2, K1,K2, K1,K2,K K1,K2,K	ramme comes K3,K4,K5 K3,K4,K5 3,K4,K5,K6
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures ofelectrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics andactivity coefficient of electrolytesConstruct storage devices and understand electrochemical reaction mechanism.Textbooks	Out K1,K2, K1,K2,K K1,K2,K K1,K2,K	ramme comes K3,K4,K5 K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures ofelectrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics andactivity coefficient of electrolytes Construct storage devices and understand electrochemical reaction mechanism.TextbooksD. R. Crow, Principles and applications of electrochemic Chapman & Hall/CRC, 2014.	Out K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K	ramme comes .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 edition,
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes Construct storage devices and understand electrochemical reaction mechanism.TextbooksD. R. Crow, Principles and applications of electrochem Chapman & Hall/CRC, 2014.J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism transformations Macmillan India Ltd., New Delhi, 2011.	Out K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K istry,4th	ramme comes .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 edition, ical
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures ofelectrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics andactivity coefficient of electrolytes Construct storage devices and understand electrochemical reaction mechanism.TextbooksD. R. Crow, Principles and applications of electrochem Chapman & Hall/CRC, 2014.J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism transformations Macmillan India Ltd., New Delhi, 2011.S. Glasstone, Electro chemistry, Affiliated East-West Pr Delhi, 2008.	Out K1,K2, K1,K2,K K1,K2,K K1,K2,K k1,K2,K istry,4th ofchem ess, Pvt.,	ramme comes .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 edition, ical Ltd., New
TotalCourse OutcomesOn completion of this course, students willFind the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.Predict the kinetics of electrode reactions applying Butler-Volmer and TafelequationsDifferentiate thermodynamic mechanism of corrosion,Discuss the theories of electrolytes, electrical double layer, electrodics andactivity coefficient of electrolytes Construct storage devices and understand electrochemical reaction mechanism.TextbooksD. R. Crow, Principles and applications of electrochem Chapman & Hall/CRC, 2014.J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism transformations Macmillan India Ltd., New Delhi, 2011.S. Glasstone, Electro chemistry, Affiliated East-West Pr	Out K1,K2, K1,K2,K K1,K2,K K1,K2,K k1,K2,K istry,4th ofchem ess, Pvt., ngarajan s,	ramme comes .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 edition, ical Ltd., New and P.S.
	 coefficient Tafel equations and Tafel plots. Electrodics of Multistep Multi Electron System: Rates multi-step electrode reactions, Butler - Volmer equation a multi-step reaction. Rate determining step, electrolarization and depolarization. Transfer coefficient significance and determination, Stoichiometric nut Electro-chemical reaction mechanisms-rate express order, and surface coverage. Reduction of I³⁻, Fe²⁺ dissolution of Fe to Fe²⁺. Overvoltage - Chemical and echemical, Phase, activation and concentration over pote Evolution of oxygen and hydrogen at different pH. Por and Evan's diagrams. Concentration Polarization, Batteries and Fuel cells: of Transport of electro active species - Diffusion, migrati hydrodynamic modes. Role of supporting electro Polarography- principle and applications. Principle of wave polarography. Cyclic voltammetry- anodic and castripping voltammetry and differential pulse voltam Sodium and lithium-ion batteries and redox flow ba Mechanism of charge storage: conversion and al Capacitors- mechanism of energy storage, charging at conversion and constant voltage. Energy production system 	Electrodics of Multistep Multi Electron System: Rates of multi-step electrode reactions, Butler - Volmer equation for a multi-step reaction. Rate determining step, electrode polarization and depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I ³⁻ , Fe ²⁺ , and dissolution of Fe to Fe ²⁺ . Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax

	Reference Books
1	J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry,vol.1 and 2B,
1.	Springer, Plenum Press, New York, 2008.
2.	J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electrochemistry,
۷.	vol. 2A, Springer, Plenum Press, New York, 2008.
3.	Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, NewYork, 2010.
4.	L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
	K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan,
5.	2001.
	Web Resources
1.	https://www.pdfdrive.com/modern-electrochemistry-e34333229.

CO /PC)	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	P0 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong.?	Ma	dium.'	2	Low-	1		•	•	•		•

Strong-3 Medium-2

Low-1	

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3

]	Mark	S
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHGE12	MOLECULAR SPECTROSCOPY	Elective	4	6	25	75	100

	Learning Objectives	
L1	To understand the influence of rotation and vibrations on the spe	ectra of the
L1	polyatomic molecules.	
L2	To study the principle of Raman spectroscopy, ESR spectros	copy, EPR
112	spectroscopy and fragmentation patterns in Mass spectroscopy.	
L3	To highlight the significance of Franck-Condon principle to in	terpret the
	selection rule, intensity and types of electronic transitions.	
	To interpret the first and second order NMR spectra in terms of s	
L4	coupling patterns using correlation techniques such as COSY	, HETCOR,
	NOESY.	1
L5	To carry out the structural elucidation of molecules using different	it spectral
	techniques.	Noof
UNIT	Contents	No. of Hours
	Detational and Daman Snastragony Detational anastra of	nouis
	Rotational and Raman Spectroscopy: Rotational spectra of diatomic and polyatomic molecules. Intensities of rotational	
	spectral lines, effect of isotopic substitution. Non-rigid rotators.	
	Classical theory of the Raman effect, polarizability as a tensor,	
	polarizability ellipsoids, quantum theory of the Raman effect,	
Ι	Pure rotational Raman spectra of linear and asymmetric top	18
	molecules, Stokes and anti-Stokes lines. Vibrational Raman	
	spectra, Raman activity of vibrations, rule of mutual exclusion,	
	rotational fine structure-O and S branches, Polarization of	
	Raman scattered photons.	
	Vibrational Spectroscopy: Vibrations of molecules, harmonic	
	and anharmonic oscillators- vibrational energy expression,	
	energy level diagram, vibrational wave functions and their	
	symmetry, selection rules, expression for the energies of	
	spectral lines, computation of intensities, hot bands, effect of	
	isotopic substitution. Diatomic vibrating rotor, vibrational-	10
II	rotational spectra of diatomic molecules, P, R branches,	18
	breakdown of the Born-Oppenheimer approximation.	
	Vibrations of polyatomic molecules – symmetry properties,	
	overtone and combination frequencies. Influence of rotation on	
	vibrational spectra of polyatomic molecule, P, Q, R branches, parallel and perpendicular vibrations of linear and symmetric	
	top molecules.	
	Electronic spectroscopy: Electronic Spectroscopy: Electronic	
-	spectroscopy of diatomic molecules, Frank-Condon principle,	
III	dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$	18
	transitions and their selection rules. Photoelectron	

[_				
	Spectroscopy: Basic principles, photoelectron spectra of	-				
	molecules, Xray photoelectron spectroscopy (XPS).					
	Laser action, population inversion, properties of laser rac	liation,				
	examples of simple laser systems.					
	NMR and ESR spectroscopy: Chemical shift, F	actors				
	influencing chemical shifts: electronegativity and electro	ostatic				
	effects; Mechanism of shielding and deshielding. Spin sys					
	First order and second order coupling of AB sy					
	Simplification of complex spectra. Spin-spin interactions:					
	Homonuclear coupling interactions - AX, AX2, AB types. V					
	germinal and long-range coupling-spin decoupling. N					
	Overhauser effect (NOE), Factors influencing co					
	constants and Relative intensities. 13CNMR and stru					
	correlations, Satellites. Brief introduction to 2D NMR –	-				
IV	NOESY. Introduction to 31P, 19F NMR. ESR spectro		18			
	Characteristic features of ESR spectra, line shapes an					
	widths; ESR spectrometer. The g value and the hyp	erfine				
	coupling parameter (A), origin of hyperfine intera	action.				
	Interpretation of ESR spectra and structure elucidat	ion of				
	organic radicals using ESR spectroscopy; Spin orbit co	upling				
	and significance of g-tensors, zero/non-zero field sp	litting,				
	Kramer's degeneracy, application to transition	-				
	complexes (having one to five unpaired electrons) inc					
	biological molecules and inorganic free radicals. ESR spe	-				
	magnetically dilute samples.					
	Mass Spectrometry, EPR and Mossbauer Spectro	sconv:				
	Ionization techniques- Electron ionization (EI), ch					
	ionization (CI), desorption ionization (FAB/M					
	electrospray ionization (ESI), isotope abundance, mo					
	ion, fragmentation processes of organic molecules, deduc					
	structure through mass spectral fragmentation, high reso					
	Effect of isotopes on the appearance of mass spectrum					
	spectra of anisotropic systems - anisotropy in g-value, ca					
V	anisotropy, anisotropy in hyperfine coupling, hy		18			
	splitting caused by quadrupole nuclei. Zero-field splitting					
	and Kramer's degeneracy. Applications of EPR to organ					
	inorganic systems. Structural elucidation of organic com					
	by combined spectral techniques. Principle of Mos					
	spectroscopy: Doppler shift, recoil energy. Isomer					
	quadrupole splitting, magnetic interactions. Applic					
	Mossbauer spectra of high and low-spin Fe and Sn comp					
	Total	ounus	90			
		Prog	ramme			
	Course Outcomes					
CO	On completion of this course, students will					
1	Find the importance of rotational and Raman	K1 KJ	K3,K4,K5			
1	spectroscopy.		13,137,13			
2	apply the vibrational spectroscopic techniques to	V1 V2	K3,K4,K5			
Δ	diatomic and polyatomic molecules. K1,I					
2	evaluate different electronic spectra of simple	K1 K2 K	3,K4,K5,K6			
3	evaluate unicient ciectionic spectra or simple	11111111111	5,114,115,110			

		1				
	molecules using electronic spectroscopy.					
4	outline the NMR, ¹³ C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹ P, ¹⁹ F NMR and ESR spectroscopic techniques.	K1,K2,K3,K4,K5,K6				
5	develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques	K1,K2,K3,K4,K5,K6				
	Textbooks					
1	C. N. Banwell and E. M. McCash, <i>Fundamentals of Molecu</i> Ed., Tata McGraw Hill, New Delhi, 2000.	ılar Spectroscopy, 4 th				
2	2 R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification of Organic Compounds</i> , 6 th Ed., John Wiley & Sons, New York, 2003.					
3	W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book Society, 1987.					
4	D H Williams and L Fleming Snectrosconic Methods in Organic Chemistry 4th					
5	R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders: Philadelphia, 1992.					
	Reference Books	-				
1.	P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed Press, Oxford, 2002.	l., Oxford University				
2.	I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons,	New York, 1974.				
3.	A. Rahman, <i>Nuclear Magnetic Resonance-Basic Princip</i> New York,1986.					
4.	K. Nakamoto, <i>Infrared and Raman Spectra of Inorgan</i> <i>Compounds</i> , PartB: 5th ed., John Wiley& Sons Inc., New Y					
5.	I A Weil I R Bolton and I E Wertz <i>Electron Paramagnetic Resonance</i>					
	Web Resources					
1.	https://onlinecourses.nptel.ac.in/noc20_cy08/preview					
2.	https://www.digimat.in/nptel/courses/video/104106	122/L14.html				
	Managina a with Dua and manage October					

Mapping with Programme Outcomes:

CO /PC)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3	Me	edium-2	2	Low-	1						

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
C03	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Strong-3 Modium-2	Low-1				

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PCHCC21	ORGANIC REACTION MECHANISM-II	Core	5	5	25	75	100	

	Learning Objectives	
L1	To understand the concept of aromaticity in benzenoid, non- heterocyclic and annulene compounds.	benzenoid,
L2	To understand the mechanism involved in various types of org reactions with evidences.	ganic
L3	To understand the applications of synthetically important reagen	ts.
L4	To correlate the reactivity between aliphatic and aromatic compo	
L5	To design synthetic routes for synthetically used organic reaction	IS.
UNIT	Contents	No. of Hours
Ι	Elimination and Free Radical Reactions: Mechanisms: E2, E1, and E1cB mechanisms. Syn- and anti-eliminations. Orientation of the double bond: Hoffmann and Saytzeff rules. Reactivity: Effect of substrate, attacking bases, leaving group and medium. Stereochemistry of eliminations in acyclic and cyclic systems, pyrolytic elimination. Long lived and short-lived radicals – Production of radicals by thermal and photochemical reactions, Detection and stability of radicals, characteristics of free radical reactions and free radical, reactions of radicals; polymerization, addition, halogenations, aromatic substitutions, rearrangements. Reactivity: Reactivity on aliphatic, aromatic substrates, reactivity in the attacking radical, effect of solvent.	15
II	Oxidation and Reduction Reactions: Mechanisms: Direct electron transfer, hydride transfer, hydrogen transfer, displacement, addition-elimination, oxidative and reductive coupling reactions. Mechanism of oxidation reactions: Dehydrogenation by quinones, selenium dioxides, ferricyanide, mercuric acetate lead tetraacetate, permanganate, manganese dioxide, osmium tetroxide, oxidation of saturated hydrocarbons, alkyl groups, alcohols, halides and amines. Reactions involving cleavage of C-C bonds - cleavage of double bonds, oxidative decarboxylation, allylic oxidation, oxidation by chromium trioxide-pyridine, DMSO-Oxalyl chloride (Swern oxidation) and Corey-Kim oxidation, dimethyl sulphoxide- dicyclohexyl carbodiimide (DMSO-DCCD). Mechanism of reductionreactions: Wolff-Kishner, Clemmenson, Rosenmund, reduction with Trialkyl and triphenyltin hydrides, McFadyen-Steven's reduction, Homogeneous hydrogenation, Hydroboration with cyclic systems, MPV and Bouveault-Blanc reduction.	15
III	UNIT-III: Rearrangements: Rearrangements to electron	15

	rearrangements -applications and stereochemistry, W Meerwein, Demjanov, Dienone-phenol, Baker-Venkatar	raman,					
	Benzilic acid and Wolff rearrangements. Rearrangeme electron deficient nitrogen: Hofmann, Curtius, Schmidt, I						
	Beckmann and abnormal Beckmann rearrange						
	Rearrangements to electron deficient oxygen: Baeyer-V	Villiger					
	oxidation and Dakin rearrangements. Rearrangemen						
	electron rich atom: Favorskii, Quasi-Favorskii, Stevens,						
	Wittig and [2,3]-Wittig rearrangements. Fries and Photo rearrangement. Intramolecular rearrangements – C						
	abnormal Claisen, Cope, oxy-Cope Benzidine rearrangeme						
	Addition to Carbon Multiple Bonds: Mechanisms: (a)Ad						
	to carbon-carbon multiple bonds- Addition reactions inv	-					
	electrophiles, nucleophiles, free radicals, carbenes and mechanisms- Orientation and reactivity, hydrogenat	5					
	double and triple bonds, Michael reaction, addition of o						
	and Nitrogen; (b) Addition to carbon- hetero atom m	ultiple					
IV	bonds: Mannich reaction, acids, esters, nitrites, addit	ion of action.	15				
	Grignard reagents, Wittig reaction, Prins re Stereochemical aspects of addition reactions. Additi						
	Carbon-Hetero atom Multiplebonds: Addition of Grignard						
	reagents, organozinc and organolithium reagents to carbonyl						
	and unsaturated carbonyl compounds. Mechanis condensation reactions involving enolates –Stobbe rea						
	Hydrolysis of esters and amides, ammonolysis of esters.	ctions.					
	Reagents and Modern Synthetic Reactions: L	ithium					
	diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), S						
	cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic ad						
1	CPBA), Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD,						
	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene	u₃SnD, (DBU),					
	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbo	u ₃ SnD, (DBU), oxylate					
v	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbo (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid	u ₃ SnD, (DBU), oxylate (TFA),	15				
v	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbo (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid	u₃SnD, (DBU), oxylate (TFA), EMPO),	15				
v	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-eneDiisopropylazodicarboxylate (DIAD), Diethylazodicarbo(DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acidTetramethylpiperiridin-1-oxylPhenyltrimethylammonium tribromide (PTAB). Diazomaand Zn-Cu, Diethyl maleate (DEM), Copper diacetylace	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate	15				
v	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazom and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate (PCC),	15				
V	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazoma and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate Pyridinium dichromate (PDC), Meisenheimer complex.	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate (PCC), Suzuki	15				
V	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazoma and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate Pyridinium dichromate (PDC), Meisenheimer complex. coupling, Heck reaction, Negishi reaction, Baylis-H reaction.	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate (PCC), Suzuki	15				
V	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazom and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate Pyridinium dichromate (PDC), Meisenheimer complex. coupling, Heck reaction, Negishi reaction, Baylis-H	u ₃ SnD, (DBU), oxylate (TFA), EMPO), ethane tonate (PCC), Suzuki illman	75				
V	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazoma and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate Pyridinium dichromate (PDC), Meisenheimer complex. coupling, Heck reaction, Negishi reaction, Baylis-H reaction.	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate (PCC), Suzuki illman Prog	75 ramme				
V 	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene Diisopropylazodicarboxylate (DIAD), Diethylazodicarbox (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid Tetramethyl piperiridin-1-oxyl (TE Phenyltrimethylammonium tribromide (PTAB). Diazoma and Zn-Cu, Diethyl maleate (DEM), Copper diacetylace (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate Pyridinium dichromate (PDC), Meisenheimer complex. coupling, Heck reaction, Negishi reaction, Baylis-H reaction. Total	u ₃ SnD, (DBU), oxylate (TFA), CMPO), ethane tonate (PCC), Suzuki illman Prog	75				
	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-eneDiisopropylazodicarboxylate (DIAD), Diethylazodicarbox(DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acidTetramethylpiperiridin-1-oxylPhenyltrimethylammonium tribromide (PTAB). Diazomoand Zn-Cu, Diethyl maleate (DEM), Copper diacetylace(Cu(acac)2), TiCl3, NaIO4, Pyridinium chlorochromatePyridinium dichromate (PDC), Meisenheimer complex.coupling, Heck reaction, Negishi reaction, Baylis-Hreaction.TotalCourse OutcomesOn completion of this course, students willRecall the basic principles of aromaticity of organic	u ₃ SnD, (DBU), oxylate (TFA), EMPO), ethane tonate (PCC), Suzuki illman Prog Out	75 ramme				
СО	Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-eneDiisopropylazodicarboxylate (DIAD), Diethylazodicarbox(DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acidTetramethylpiperiridin-1-oxylPhenyltrimethylammonium tribromide (PTAB). Diazomaand Zn-Cu, Diethyl maleate (DEM), Copper diacetylace(Cu(acac)2), TiCl3, NaIO4, Pyridinium chlorochromatePyridinium dichromate (PDC), Meisenheimer complex.coupling, Heck reaction, Negishi reaction, Baylis-Hreaction.TotalCourse OutcomesOn completion of this course, students will	u ₃ SnD, (DBU), oxylate (TFA), EMPO), ethane tonate (PCC), Suzuki illman Prog Out K1,K2,	75 gramme comes				

3	Predict the suitable reagents for the conversion of selective organic compounds.	K1,K2,K3,K4,K5,K6			
4	Correlate the principles of substitution, elimination, and addition reactions. K1,K2,K3,K4				
5	Design new routes to synthesis organic compounds.	K1,K2,K3,K4,K5,K6			
	Textbooks				
1	J. March and M. Smith, <i>Advanced Organic Chemistry</i> , 5t and Sons. 2001.	h ed.,John-Wiley			
2	E. S. Gould, <i>Mechanism and Structure in Organic Che</i> Holt, Rinehart and Winston Inc., 1959.	mistry,			
3	3 P. S. Kalsi, <i>Stereochemistry of carbon compounds</i> , 8 th edn, NewAge International Publishers, 2015.				
4	P. Y.Bruice, Organic Chemistry, 7 th edn.,Prentice Hall, 2013.				
5	5 R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee <i>OrganicChemistry</i> , 7 th edn., Pearson Education, 2010.				
	Reference Books				
1.	S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw HillIntern 1987.	national Editionn,			
2.	L. F. Fieser and M. Fieser, <i>Organic Chemistry</i> , Asia Pub Bombay, 2000.	olishingHouse,			
3.	E.S. Gould, <i>Mechanism and Structure in Organic Chemistr</i> Winston Inc., 1959.	y, Holt,Rinehart and			
4.	T. L. Gilchrist, Heterocyclic Chemistry, Longman Press, 19	989.			
5.	J. A. Joule and K. Mills, Heterocyclic Chemistry, 4thed.,	John-Wiley, 2010.			
	Web Resources				
1.	https://sites.google.com/site/chemistryebookscollectio chemistry/organic	<u>n02/home/organ ic-</u>			
2.	https://www.organic-chemistry.org/				

CO /PO)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3	Me	edium-2	2	Low-	1						

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Strong-3 Medium-2	Low-1				

]	Mark	S
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHCC22	PHYSICAL CHEMISTRY-I	Core	5	5	25	75	100

Learning Objectives						
L1	To recall the fundamentals of thermodynamics and the composition	ition of				
	partial molar quantities.					
L2	To understand the classical and statistical approach of the functions					
L3	To compare the significance of Maxwell-Boltzman, Fermi-Dirac	c andBose-				
E5	Einstein					
L4	To correlate the theories of reaction rates for the evaluation of	of				
	thermodynamic parameters.					
L5	To study the mechanism and kinetics of reactions.					
UNIT	Contents	No. of Hours				
I	Classical Thermodynamics: Partial molar properties- Chemical potential, Gibb's- Duhem equation-binary and ternary systems. Determination of partial molar quantities. Thermodynamics of real gases - Fugacity- determination of fugacity by graphical and equation of state methods- dependence of temperature, pressure and composition. Thermodynamics of ideal and non-ideal binary mixtures, Duhem - Margulus equation applications of ideal and non-ideal mixtures. Activity and activity coefficients-standard states - determination-vapour pressure, EMF and freezing point methods.	15				
II	Statistical thermodynamics: Introduction of statistical thermodynamics concepts of thermodynamic and mathematical probabilities-distribution of distinguishable and non-distinguishable particles. Assemblies, ensembles, canonical particles. Maxwell -Boltzmann, Fermi Dirac & Bose-Einstein Statistics- comparison and applications. Partition functions-evaluation of translational, vibrational and rotational partition functions for monoatomic, diatomic and polyatomic ideal gases. Thermodynamic functions in terms of partition functions-calculation of equilibrium constants. Statistical approach to Thermodynamic properties: pressure, internal energy, entropy, enthalpy, Gibb's function, Helmholtz function residual entropy, equilibrium constants and equipartition principle. Heat capacity of mono and di atomic gases-ortho and para hydrogen. Heat capacity of solids-Einstein and Debye models.	15				
III	Irreversible Thermodynamics: Theories of conservation of mass and energy entropy production in open systems by	15				

	heat, matterand current flow, force and flux concepts. Onsager theory-validity and verification- Onsager reciprocal relationships. Electro kinetic and thermo mechanical effects- Application of irreversible thermodynamics to biological systems.					
IV	 Kinetics of Reactions: Theories of reactions-effect of temperature on reaction rates, collision theory of reaction rates, Unimolecular reactions -Lindeman Christiansen hypothesis- molecular beams, collision crossections, effectiveness of collisions, Potential energy sur Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reaction between atoms and molecules, time and true order-kine parameter evaluation. Factors determine the reaction ration ration - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism acid base catalyzed reactions- Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. 	oss faces. ons tic tes in	15			
v	Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 - Br_2$ reactions (Thermal and Photochemical reactions). Pice Herzfeld mechanism. Study of					
	Total		75			
	Course Outcomes	-	gramme comes			
CO	On completion of this course, students will					
1	Explain the classical and statistical concepts of thermodynamics.	K1,K2	,K3,K4,K5			
2	Compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.	K1,K2	,K3,K4,K5			
3	Discuss the various thermodynamic and kinetic determination.	K1,K2,K	3,K4,K5,K6			
4	Evaluate the thermodynamic methods for real gases ad mixtures.	3,K4,K5,K6				
5	Compare the theories of reactions rates and fast K1,K2,K					
	Textbooks					
1	J. Rajaram and J.C. Kuriacose, Thermodynamics for Stu Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1					
2	I.M. Klotz and R.M. Rosenberg, Chemical thermodynan W.A. BenjaminPublishers, California, 1972.		edition,			
3	M.C. Gupta, Statistical Thermodynamics, New Age Intern New Delhi, 1995.	ational,F	vt. Ltd.,			

4	K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -2013.						
4							
5	J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms ofchemical						
5	transformation,M acmillan India Ltd, Reprint - 2011.						
	Reference Books						
1.	D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular						
1.	Approach, Viva Books Pvt. Ltd., New Delhi, 1999.						
2	R.P. Rastogi and R.R. Misra, Classical Thermodynamics, VikasPublishing,						
2.	Pvt. Ltd., New Delhi, 1990.						
2	S.H. Maron and J.B. Lando, Fundamentals of PhysicalChemistry,						
3.	Macmillan Publishers, New York, 1974						
4.	K.B. Ytsiimiriski, "Kinetic Methods of Analysis", PergamomPress,1996.						
5.	Gurdeep Raj, Phase rule, Goel Publishing House, 2011.						
	Web Resources						
1.	https://nptel.ac.in/courses/104/103/104103112/						
2.	https://bit.ly/3tL3GdN						

CO /PO)	PO 1	PO 2	PO 3	PO 4	PO 5	P0 6	P0 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong-3	Me	edium-2	2	Low-	1						

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Strong.3 Modium.2	Low-1				

Strong-3 Medium-2

Low-1

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PCHCC2P	INORGANIC CHEMISTRY PRACTICAL	Core	4	6	40	60	100	

	Learning Objectives				
L1	To understand and enhance the visual observation as a	n analyti	cal toolfor		
10	the quantitative estimation of ions.				
L2	To recall the principle and theory in preparing standard				
L3	To train the students for improving their skill in estimation	ting the	amountor		
	ion accurately present in the solutionTo estimate metal ions, present in the given solution accurate	curatoly	without		
L4	using instruments.	Lurately	without		
L5	To determine the amount of ions, present in a binary mix	xture acc	uratelv.		
			No. of		
UNIT	Contents		Hours		
	Analysis of mixture of cations: Analysis of a mixture	of four			
	cations containing two common cations and two rare of				
	Cations tobe tested.				
_	Group-I : W, Tl and Pb.				
Ι	Group-II : Se, Te, Mo, Cu, Bi and Cd.		30		
	Group-III : Tl, Ce, Th, Zr, V, Cr, Fe, Ti and				
	U.Group-IV : Zn, Ni, Co and Mn.				
	Group-V : Ca, Ba and Sr.Group-VI : Li and Mg.				
	Preparation of metal complexes: Preparation of inc	organic			
	complexes:	Banno			
	a. Preparation of tristhioureacopper(I)sulphate				
	b. Preparation of potassium trioxalate chromate(III)				
	c. Preparation of tetramminecopper(II) sulphate				
II	d. Preparation of Reineck's salt		30		
	e. Preparation of hexathioureacopper(I) chloridedihydr	ate			
	f. Preparation of <i>cis</i> -Potassium tri oxalate diaquachrom				
	g. Preparation of sodium trioxalatoferrate(III)	ace(iii)			
	h. Preparation of hexathiourealead(II) nitrate				
	Complexometric Titration:				
	1. Estimation of zinc, nickel, magnesium, and calcium.				
	2. Estimation of mixture of metal ions-pH control,				
III	masking anddemasking agents.		30		
	3. Determination of calcium and lead in a mixture (pH c	ontrol).	00		
	4. Determination of manganese in the presence of iron.				
	5. Determination of nickel in the presence of iron.				
	Total		90		
	Course Outcomes	-	ramme		
		Out	comes		
CO 1	On completion of this course, students will Identify the anions and cations present in a mixture of	<u>دي</u> 1ي	K3,K4,K5		
T		111,112,	113,117,113		

	salts.	
2	Apply the principles of semi micro qualitative analysis to categorize acid radicalsand basic radicals.	K1,K2,K3,K4,K5
3	Acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.	K1,K2,K3,K4,K5,K6
4	Choose the appropriate chemical reagents for the detection of anions and cations.	K1,K2,K3,K4,K5,K6
5	Synthesize coordination compounds in good quality.	K1,K2,K3,K4,K5,K6
	Textbooks	
1	A. JeyaRajendran, Microanalytical Techniques in Chem Qualitative Analysis, United global publishers, 2021.	nistry:Inorganic
2	V. V. Ramanujam, <i>Inorganic Semimicro Qualitative An</i> National Publishing Company, Chennai, 1974.	alysis;3rded., The
3	Vogel's Text book of Inorganic Qualitative Analysis, 4thed	., ELBS,London.
	Reference Books	
1.	G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i> ; 1965.	ChapmanHall,
2.	W. G. Palmer, Experimental <i>Inorganic Chemistry</i> ; Cambri Press, 1954.	idgeUniversity

CO /PO		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1		3	3	3	3	2	3	3	3	3	2
CO 2		2	3	3	3	3	2	3	3	3	3
CO 3		3	3	2	3	3	3	3	2	3	3
CO 4		2	3	3	3	3	2	3	3	3	3
CO 5		2	3	2	3	3	2	3	2	3	3
Strong 2	Ma	dium)	Lovy	1						

Strong-3 Medium-2

Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
	I. 4	1			

						Mark	KS (S
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHDE21	MEDICINAL CHEMISTRY	Elective	3	5	25	75	100

Learning Objectives					
To study the chemistry behind the development of phan	maceutic	al			
	2				
		atmentof			
diabetes.	5 und tiet				
To identify and apply the action of various antibiotics.					
Contents		No. of Hours			
antagonist, partial agonist. Receptors, Receptor types, T of Drug – receptor interaction, Drug synergism	heories 1, Drug	15			
Antibiotics: Introduction, Targets of antibiotics action classification of antibiotics, enzyme-based mechanism action, SAR of penicllins and tetracyclins, clinical applica	n, of ation of	15			
Antihypertensive agents and diuretics: Classificat cardiovascular agents, introduction to hypertension, et types, classification of antihypertensive agents, classif and mechanism of action of diuretics, Furos	tion of tiology, fication	15			
Antihypertensive agents and diuretics: Classificat cardiovascular agents, introduction to hypertension, et types, classification of antihypertensive agents, classif and mechanism of action of diuretics, Furos	tiology, fication	15			
VAnalgesics, Antipyretics and Anti-inflammatory Drugs: Introduction, Mechanism of inflammation, classification and mechanism of action and paracetamol, Ibuprofen, Diclofenac, naproxen, indomethacin, phenylbutazone and meperidine. Medicinal Chemistry of Antidiabetic Agents Introduction, Types of diabetics, Drugs used for the treatment, chemical classification, Mechanism of action, Treatment of diabetic					
Total		75			
Course Outcomes Pro					
On completion of this course, students will					
	To study the chemistry behind the development of pharmaterials. To gain knowledge on mechanism and action of drugs. To understand the need of antibiotics and usage of drugs. To identify and apply the action of various antibiotics. Contents Introduction to receptors: Introduction, targets, Agon antagonist, partial agonist. Receptors, Receptor types, T of Drug – receptor interaction, Drug synergism resistance,physicochemical factors influencing drug action Antibiotics: Introduction, Targets of antibiotics action classification of antibiotics, enzyme-based mechanism action, SAR of penicllins and tetracyclins, clinical applica penicillins,cephalosporin.Current trends in antibiotic the Antihypertensive agents and diuretics: Classificat and mechanism of action of diuretics, Furos Hydrochlorothiazide, Amiloride. Antihypertensive agents and diuretics: Classificat and mechanism of action of diuretics, Furos Hydrochlorothiazide, Amiloride. Antihypertensive agents and diuretics: Classificat and mechanism of action of diuretics, Furos Hydrochlorothiazide, Amiloride. Antihypertensive agents and diuretics: Classificat and mechanism of action of diuretics, Furos Hydrochlorothiazide, Amiloride. Antibypertensive agents and diuretics. Furos Hydrochlorothiazide, Amiloride. Antipypertensive agents and metherity of antibiotic divertics, Furos Hydrochlorothiazide, Amiloride. Antipypertensive agents and furties agents, classificatio mechanism of action of antihypertensive agents, classificatio mechanism of action of antihypertensive agents, classificatio mechanism of action of the treatment, che classification, Mechanism of action, Treatment of di mellitus. Chemistry of Antidiabetic Agents Introdu tipypes of diabetics, Drugs used for the treatment, che classification, Mechanism of action, Treatment of di me	To study the chemistry behind the development of pharmaceutic materials. To gain knowledge on mechanism and action of drugs. To gain knowledge on mechanism and action of drugs. To familiarize with the mode of action of diabetic agents and treat diabetes. To identify and apply the action of various antibiotics. Contents Introduction to receptors: Introduction, targets, Agonist, antagonist, partial agonist. Receptors, Receptor types, Theories of Drug – receptor interaction, Drug synergism, Drug resistance, physicochemical factors influencing drug action. Antibiotics: Introduction, Targets of antibiotics action, classification of antibiotics, enzyme-based mechanism of action, SAR of penicllins and tetracyclins, clinical application of penicillins, cephalosporin.Current trends in antibiotic therapy. Antihypertensive agents and diuretics: Classification of cardiovascular agents, introduction to hypertension, etiology, types, classification of antihypertensive agents, classification and mechanism of action of diuretics, Furosemide, Hydrochlorothiazide, Amiloride. Antihypertensive agents and diuretics: Classification and mechanism of action of diuretics, Furosemide, Hydrochlorothiazide, Amiloride. Antipypertensive agents and diuretics: Classification and mechanism of action of diuretics, Furosemide, Hydrochlorothiazide, Amiloride. Antipypertensive agents, and paracetamol, Ibuprofen, Diclofenac, naproxen, indomethacin, phenylbutazone and meperidine. Medicinal Chemistry of Antidiabetic Agents Introduction, Treatment of action, Mechanism of action, Treatment ot arec			

r		· · · · · · · · · · · · · · · · · · ·				
2	Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.	K1,K2,K3,K4,K5				
3	Explain the relationship between drug's chemical structure and its therapeuticproperties.	K1,K2,K3,K4,K5,K6				
4	Designed to give the knowledge of different theories of drug actions at molecularlevel.	K1,K2,K3,K4,K5,K6				
5	Identify different targets for the development of new drugs for the treatment of infectious and GIT.	K1,K2,K3,K4,K5,K6				
	Textbooks					
1	Wilson and Gisvold's textbook of organic medicinal and chemistry,	oharmaceutical				
2	Wilson, Charles Owens: Beale, John Marlowe; Block, John William, 12th edition, 2011.	ı H,Lipincott				
	Graham L. Patrick, An Introduction to Medicinal Chemist	try, 5th edition,				
3	Oxford University Press, 2013. Jayashree Ghosh, A text book of					
	Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999,1999 edn.					
4	O. LeRoy, Natural and synthetic organic medicinal compounds,Ealemi, 1976.					
	S Ashutosh Kar Medicinal Chemistry Wiley Eastern Limited NewDelhi					
5	1993, New edn.					
	Reference Books					
1.	Foye's Princles of Medicinal Chemistry, Lipincott Willia 2012	ms, SeventhEdition,				
2.	Burger's Medicinal Chemistry, Drug Discovery and Dev Abraham, David P. Rotella, Alfred Burger, Academic pres	1 · · · · · · · · · · · · · · · · · · ·				
3.	Wilson and Gisvold's Textbook of Organic Medicinal and Chemistry, John M. Beale Jr and John M. Block,Wolters Kl edn.					
4.	P. Parimoo, A Textbook of Medical Chemistry, New Delhi Publishers.1995.	: CBS				
5.	S Ramakrishnan K G Prasannan and R Raian Textbook of Medical					
	Web Resources					
1.	https://www.ncbi.nlm.nih.gov/books/NBK482447/					
2.	https://training.seer.cancer.gov/treatment/chemothera	apy/types.html				
3.	https://www.classcentral.com/course/swayam-medicin					
э.	12908					
	Managing with Day many a October of					

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	2	3	3	3	3	2
CO 2	2	3	3	3	3	2	3	3	3	3
CO 3	3	3	2	3	3	3	3	2	3	3
CO 4	2	3	3	3	3	2	3	3	3	3
CO 5	2	3	2	3	3	2	3	2	3	3

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3

Level of Correlation between PSO's and CO's

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PCHGE21	BIO-INORGANIC CHEMISTRY	Elective	3	5	25	75	100

	Learning Objectives	
L1	To understand the role of trace elements.	
L2	To understand the biological significance of iron, sulpur.	
L3	To study the toxicity of metals in medicines.	
L4	To have knowledge on diagnostic agents.	
L5	To discuss on various metalloenzymes properties.	
UNIT	Contents	No. of Hours
I	Essential trace elements: Selective transport and storage of metal ions: Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signalling proteins. Metalloenzymes: Zinc enzymes– carboxypeptidase and carbonic anhydrase. Iron enzymes–catalase, peroxidase. Copper enzymes – superoxide dismutase, Plast ocyanin, Ceruloplasmin, Tyrosinase. Coenzymes - Vitamin-B12 coenzymes.	15
II	Transport Proteins: Oxygen carriers -Hemoglobin and myoglobin - Structure and oxygenation Bohr Effect. Binding of CO, NO, CN– to Myoglobin and Hemoglobin. Biological redox system: Cytochromes-Classification, cytochrome a, b and c. Cytochrome P-450. Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-sulphur proteins- Rubredoxin and Ferredoxin- Structure and classification.	15
III	Nitrogen fixation-Introduction, types of nitrogen fixing microorganisms. Nitrogenase enzyme - Metal clusters in nitrogenase- redox property - Dinitrogen complexes transition metal complexes of dinitrogen - nitrogen fixation via nitride formation and reduction of dinitrogen to ammonia. Photosynthesis: photosystem-I and photosystem-II-chlorophylls structure and function.	15
IV	Metals in medicine: Metal Toxicity of Hg, Cd, Zn, Pb, As, Sb. Therapeutic Compounds: Vanadium-Based Diabetes Drugs; Platinum-Containing Anticancer Agents.Chelation therapy; Cancer treatment. Diagnostic Agents: Technetium Imaging Agents; Gadolinium MRI Imaging Agents. temperature and critical magnetic Field.	15
V	Enzymes -Introduction and properties -nomenclature and classification. Enzyme kinetics, free energy of activation and	15

	the effects of catalysis. Michelis - Menton equation - Ef pH, temperature on enzyme reactions. Factors contribu- the efficiencyof enzyme.		
	Total		75
	Course Outcomes		gramme comes
CO	On completion of this course, students will		
1	Analyze trace elements.	K1,K2	,K3,K4,K5
2	Explain the biological redox systems.	K1,K2	,K3,K4,K5
3	Analyzing the toxicity in metals.	K1,K2,K	3,K4,K5,K6
4	Understand the role of diagnostic agents	K1,K2,K	3,K4,K5,K6
5	Intrepret nitrogen fixation and photosynthetic mechanism.	K1,K2,K	3,K4,K5,K6
	Textbooks		
1	Williams, D.R. – Introdution to Bioinorganic chemistry.		
2	F.M. Fiabre and D.R. Williams– The Principles of Bioinor Chemistry,RoyolSoceity of Chemistry, Monograph for Te		1
3	K.F. Purcell and Kotz., Inorganic chemistry, WB Saunder		
4	G.N. Mugherjea and Arabinda Das, Elements of Bioinorga 1993.		
5	R. Gopalan, V. Ramalingam, <i>Concise Coordination Ch</i> 2001.	nemistry,	S. Chand,
	Reference Books		
1.	M.Satake and Y.Mido, BioinorganicChemistry Publishing House, New Delhi (1996)	- Discov	very
2.	M.N. Hughes, 1982, The Inorganic Chemistry of Biolog Edition, Wiley London.	gicalproc	esses, II
3.	R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987	′ .	
4.	R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley,		
5.	T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.		
	Web Resources		
1.	https://www.pdfdrive.com/instant-notes-in-inorganic-c	<u>chemistry</u>	<u>- the-</u>
1.	instant-notes-chemistry-series-d162097454.html		
2.	https://www.pdfdrive.com/shriver-and-atkins-inorgani edition-d161563417.html	<u>c-chemis</u>	<u>try- 5th-</u>
	Monning with Drogramma Outcomes:		

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	2	3	3	3	3	2
CO 2	2	3	3	3	3	2	3	3	3	3
CO 3	3	3	2	3	3	3	3	2	3	3
CO 4	2	3	3	3	3	2	3	3	3	3
CO 5	2	3	2	3	3	2	3	2	3	3

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3

Level of Correlation between PSO's and CO's

					Marks		
Course Code	Course Title	ourse Title Category		Hours	CIAE	External	Total
23PCHSE21	CHEMISTRY IN EVERYDAY LIFE	SEC	2	4	25	75	100

	Learning Objectives						
L1	To understand the food pyramid, hygiene and nutritio	n.					
L2	To explain the food and water chemistry						
L3	To study the types of drugs.						
L4	To learn about the antibiotics and vitamins.						
UNIT	Contents		No. of Hours				
-	Health : Definition - Food Pyramid – Health – Hygiene - I	nal,	12				
Ι	I under and over nutrition, their causes and remedies, sanitation.						
II	II Food chemistry: Food - classification and functions - Digestion in mouth, stomach and intestine. Absorption - spoilages, preservation techniques (canning, dehydration, freeze-drying. salting, pickling, pasteurizing, fermenting and carbonating).						
Ш	 Water Chemistry: Characteristics of water, soft water and hard water - removal of hardness - Purification of water by ion exchange and reverse osmosis methods. Water pollution: Sources and effects of water pollution (Domestic, Industrial, Agricultural) -Eutrophication. 						
IV	Drugs: Types of drugs-depressant, anticonvulsant, narcotics, antipyretics antibiotics antiseptics analgesics muscle						
V	 Antibiotics: Definition - uses of Antibiotics - Ampicillin, streptomycin, tetracycl in, Erythromycin. Vitamins: Classifications of vitamins - vitamins deficiency diseases. (Vitamins A, B1, B2, B3, B6, B12, C, D, E and K). 						
	Total		60				
	Course Outcomes	-	gramme tcomes				
CO	On completion of this course, students will						
1	Understand mal, under and over nutrition.	K1,K2	,K3,K4,K5				
2	Acquire the knowledge of Digestion.	K1,K2	,K3,K4,K5				
3	Design the different methods for the Purification of water.	K1,K2,K	3,K4,K5,K6				
	4 Apply knowledge of different types of drugs. K1,K2,F						

Analyze the basics principles of vitamins and	K1,K2,K3,K4,K5,K6							
Antibiotics.								
Textbooks								
Donald J. Abraham <i>Burger Medicinal Chemistry</i> , Wil 2021.	ey, Publisher. April							
G. R. Chatwal, <i>Pharmaceutical chemistry</i> , Himalaya Publishing House,								
2022.								
Reference Books								
Singh and VK Kapoor, Organic Pharmaceutical	<i>Chemistry</i> , Vallabh							
Publications, 1996.	•							
S. Lakshmi, <i>Pharmaceutical Chemistry</i> , S. Chand Publis	hing, 2010.							
Web Resources								
https://handoutset.com/wp-content/uploads/2022/07	<u>//Burgers-</u>							
Medicinal-Chemistry-and-Drug-Discovery-Drug-Discovery-Volume-1-								
<u>Donald-JAbraham.pdf</u>								
https://books.google.co.in/books/about/Medicinal and	Phar							
maceutical_Chemistry.html?id=VYklcAAACAAJ&redir_es	c=y							
https://www.schandpublishing.com/books/tech-profes	sional/medical/a-							
textbook-pharmaceutical-chemistry/9788121915083/								
	Antibiotics. Textbooks Donald J. Abraham Burger Medicinal Chemistry, Wil 2021. G. R. Chatwal, Pharmaceutical chemistry, Himalaya Pub 2022. Reference Books Singh and VK Kapoor, Organic Pharmaceutical of Publications, 1996. S. Lakshmi, Pharmaceutical Chemistry, S. Chand Publis Web Resources https://handoutset.com/wp-content/uploads/2022/07 Medicinal-Chemistry-and-Drug-Discovery-Drug-Discover Donald-JAbraham.pdf https://books.google.co.in/books/about/Medicinal and maceutical_Chemistry.html?id=VYklcAAACAAJ&redir_es https://www.schandpublishing.com/books/tech-profes							

CO /PO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10
CO 1	3	3	3	3	2	3	3	3	3	2
CO 2	2	3	3	3	3	2	3	3	3	3
CO 3	3	3	2	3	3	3	3	2	3	3
CO 4	2	3	3	3	3	2	3	3	3	3
CO 5	2	3	2	3	3	2	3	2	3	3

Strong-3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO /PSO	PS01	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3