HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.)

Re Accredited with A++ Grade by NAAC (3rd Cycle)

Uthamapalayam, Theni District. Pin Code: 625 533.

DEPARTMENT OF PHYSICS

MASTER OF SCIENCE – PHYSICS

SYLLABUS

Choice Based Credit System – CBCS

(As per TANSCHE/MKU Guidelines)

with

Outcome Based Education (OBE)

(with effect from Academic Year 2023 -2024 onwards)

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.)

Re Accredited with A++ Grade by NAAC (3rd Cycle)

Uthamapalayam, Theni District. Pin Code: 625 533.

College Vision and Mission

Vision

Our vision is to provide the best type of higher education to all, especially to students hailing from minority Muslim community, rural agricultural families and other deprived, under privileged sections of the society, inculcating the sense of social responsibility in them. Our college is committed to produce talented, duty-bound citizens to take up the challenges of the changing times.

Mission

Our mission is to impart and inculcate social values, spirit of service and religious tolerance as envisioned by our beloved Founder President Hajee Karutha Rowther.

The Vision beckons the Mission continues forever.

HAJEE KARUTHA ROWTHER HOWDIA COLLEGE

(An Autonomous Institution Affiliated to Madurai Kamaraj University, Madurai.)

Re Accredited with A++ Grade by NAAC (3rd Cycle)

Uthamapalayam, Theni District. Pin Code: 625 533.

Department Vision and Mission

Vision

To thrive for the truth of nature in terms of agreements of theory with practice and stand firm even if ideas fail till new notions are formed. Physics portraits the landscape of life and this department look forward to explore the physics lying beneath our observations.

Mission

The mission of this department is to teach and learn physics in a collaborative, performance – based pathway; we look to encourage the students towards observation and analysis of the natural world and to provide the tools and skills to the students to be torch bearers of physics by contributing effectively to the existing laws of nature.

PROGRAM OUTCOMES

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION					
Programme	M.Sc., Physics				
Programme Code					
Duration	PG – 2 years				
Programme	PO1: Problem Solving Skill				
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.				
	PO2: Decision Making Skill				
	Foster analytical and critical thinking abilities for data-based decision-making.				
	PO3: Ethical Value				
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.				
	PO4: Communication Skill				
	Ability to develop communication, managerial and interpersonal skills.				
	PO5: Individual and Team Leadership Skill				
	Capability to lead themselves and the team to achieve organizational goals.				
	PO6: Employability Skill				
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.				
	PO7: Entrepreneurial Skill				
	Equip with skills and competencies to become an entrepreneur.				
	PO8: Contribution to Society				
	Succeed in career endeavors and contribute significantly to society.				
	PO 9 Multicultural competence				
	Possess knowledge of the values and beliefs of multiple cultures and a global perspective.				
	PO 10: Moral and ethical awareness/reasoning				
	Ability to embrace moral/ethical values in conducting one's life.				

Programme	PSO1 – Placement				
Specific Outcomes (PSOs)	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.				
	PSO 2 - Entrepreneur				
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.				
	PSO3 – Research and Development				
	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.				
	PSO4 – Contribution to Business World				
	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.				
	PSO 5 – Contribution to the Society				
	To contribute to the development of the society by collaborating with stakeholders for mutual benefit.				

Programme Scheme Eligibility

A candidate who has passed B.Sc., as the Major subject with Mathematics & Chemistry Ancillary is eligible for the Master of Science – Physics Degree.

Duration of the Course:

M.Sc., Physics – 2 years (4 Semesters).

Medium of instruction:

English.

For Programme Completion

A Candidate shall complete:

- Part III Core papers in semesters I, II, III and IV respectively
- Part III Elective papers in semesters I, II, III and IV respectively
- Part IV Non- Major Elective papers in semester II and III respectively
- Part IV Skill Enhancement Course papers in semester II, III and IV respectively
- Part V Extension activity in semester IV respectively

Scheme of Examinations under Choice Based Credit System

Term End Examinations (TEE)	- 75 Marks
Continuous Internal Assessment Examinations (CIAE)	- 25 Marks
Total	- 100 Marks

Pattern of Continuous Internal Assessment Examinations (CIAE)

Practical Examination		
Total	- 25 Mai	rks
Seminar / Quiz / Assignment	- 05 Mai	rks
Average of Two Internal Tests (each 2	0 marks) - 20 Mar	rks

Internal	– 40 marks
External	– 60 marks
Total	- 100 Marks
Pattern of Term End Examinations	

(Max. Marks: 75 / Time: 3 Hours)

External Examinations Question Paper Pattern

Section – A (10 X 1 = 10 Marks)

Answer ALL the questions.

- Questions 1 10
- Two questions from each unit
- Multiple choice questions and each question carries Four choices

Section – B (5 X 7 = 35 Marks)

Answer ALL the questions, choosing either a or b.

- Questions 11 15
- Two questions from each unit (either.... or.... type)
- Descriptive Type

Section – C (3 X 10 = 30 Marks)

- Answer ALL the questions, choosing either a or b.
- Questions 16 18
- Descriptive Type

Passing Marks

A Candidate passes the M.Sc., Physics degree by scoring a minimum of 50% of Marks (internal + external) in each course of the Programme. No minimum marks for internal assessment.

- Minimum 34 Marks (45%) for External Examination in Theory Courses.
- Minimum 27 Marks (45%) for External Examination in Practical.

M.Sc., Physics

Semester - I

Part	Part Course Course		Course Title	Credits	Hours	
	Category	code				
	Core – I	23PPHCC11	Mathematical Physics	5	6	
Core – II		23PPHCC12	Classical Mechanics and	5	6	
III		2011110012	Relativity	0	0	
	Core	23РРНСС1Р	Practical - I	5	6	
	Practical – III	2011110011		0	Ū	
	Flective- I	Flective I 23DDHDF11	Linear and Digital ICs and	4	6	
		2511110111	Applications	Т	U	
	Elective- II	23PPHGE11	Materials Science	3	6	
			Total	22	30	

Semester - II

Part	Course Category	Course code	Course Title	Credits	Hours.
	Core – IV	23PPHCC21	Statistical Mechanics	5	6
	Core – V	23PPHCC22	Quantum Mechanics –I	5	6
Ш	Core Practical – VI	23PPHCC2P	Practical - II	3	6
	Elective- III	23PPHDE21	Advanced Optics	3	5
	Elective – IV	23PPHGE21	Solid Waste Management (SWM)	3	5
IV	SEC – I (NME - I)	23PPHSE21	Medical Physics	2	2
			Total	21	30

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PPHCC11	MATHEMATICAL PHYSICS	Core	5	6	25	75	100

Pre-Requisites							
Matrices, ve	ectors, differentiation, integration, differential equations						
	Learning Objectives						
	To equip students with the mathematical techniques needed for						
L1	understanding theoretical treatment in different courses taug	ht in their					
	program						
	To extend their manipulative skills to apply mathematical techniques in their						
LZ	fields						
L3	To help students apply Mathematics in solving problems of Phys	ics					
UNIT	Contents	No. of					
		Hours					
	LINEAR VECTOR SPACE						
	independence - Scalar product- Orthogonality - Gram-Schmidt						
	orthogonalization procedure –linear operators – Dual space-						
I	ket and bra notation – orthogonal basis – change of basis –	18					
	Isomorphism of vector space – projection operator – Eigen						
	values and Eigen functions – Direct sum and invariant						
	subspace – orthogonal transformations and rotation						
	COMPLEX ANALYSIS						
	Review of Complex Numbers -de Moivre's theorem-Functions						
	of a Complex Variable- Differentiability -Analytic functions-						
	Harmonic Functions- Complex Integration- Contour						
	Integration, Cauchy – Riemann conditions – Singular points –						
II	Cauchy's Integral Theorem and integral Formula -Taylor's						
	Series - Laurent's Expansion- Zeros and poles – Residue						
	theorem and its Application: Potential theory - (1) Electrostatic						
	fields and complex potentials - Parallel plates, coaxial cylinders						
	and an annular region (2) Heat problems - Parallel plates and						
	Types of Matrices and their properties. Bank of a Matrix -						
	Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix	18					
Ш	- Hermitian and Unitary Matrices -Trace of a matrix-						
	Transformation of matrices - Characteristic equation - Eigen	20					
	values and Eigen vectors - Caylev–Hamilton theorem –						
	Diagonalization						
IV	FOURIER TRANSFORMS & LAPLACE TRANSFORMS	18					

	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform					
	of derivatives - Cosine and sine transforms - Convolution					
	theorem. Application: Diffusion equation: Flow of heat i	n an				
	infinite and in a semi - infinite medium - Wave equation:					
	Vibration of an infinite string and of a semi - infinite string.					
	Laplace transform and its inverse - Transforms of derivatives					
	and integrals – Differentiation and integration of transforms -					
	Dirac delta functions - Application - Laplace equation: Potential					
problem in a semi - infinite strip						
	DIFFERENTIAL EQUATIONS					
	Second order differential equation- Sturm-Liouville's th	eory -				
	Series solution with simple examples - Hermite polynom	nials -				
V	Generating function - Orthogonality properties - Recurr	ence	10			
v	Rodrigue formula – Orthogonality properties – Dirac de	- lta	10			
	function- One dimensional Green's function and Recipro	ncity				
	theorem -Sturm-Liouville's type equation in one dimensional	sion &				
	their Green's function.					
	PROFESSIONAL COMPONENTS					
	Expert Lectures, Online Seminars - Webinars on Industr	ial				
VI	Interactions/Visits, Competitive Examinations, Employable and					
	Communication Skill Enhancement, Social Accountabilit	lity and				
	Patriotism					
	Total		90			
	Course Outcomes	Knowle	eage Level			
	Understand use of bra-ket vector notation and explain the					
	Understand use of bra-ket vector notation and explain the	V1 V2				
1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and he able to apply them	K1,K2,	K3,K4,K5			
1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1,K2,	K3,K4,K5			
1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex	K1,K2,	K3,K4,K5,			
1 2	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to	K1,K2,	.K3,K4,K5 .K3.K4.K5			
1 2	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex	K1,K2, K1,K2,	K3,K4,K5			
1 2	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	K1,K2, K1,K2,	,K3,K4,K5 ,K3,K4,K5			
1 2 3	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types,	K1,K2, K1,K2,	K3,K4,K5 K3,K4,K5			
1 2 3	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization.	K1,K2, K1,K2, K1,K2,K	K3,K4,K5 K3,K4,K5			
1 2 3	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the	K1,K2, K1,K2, K1,K2,K	,K3,K4,K5 ,K3,K4,K5 3,K4,K5,K6			
1 2 3	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how	K1,K2, K1,K2, K1,K2,K	K3,K4,K5 K3,K4,K5 3,K4,K5,K6			
1 2 3 4	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate	K1,K2, K1,K2, K1,K2,K	K3,K4,K5 K3,K4,K5 3,K4,K5,K6			
1 2 3 4	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology	K1,K2, K1,K2, K1,K2,K	K3,K4,K5 K3,K4,K5 K3,K4,K5,K6			
1 2 3 4	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear	K1,K2, K1,K2, K1,K2,K	K3,K4,K5 K3,K4,K5 3,K4,K5,K6			
1 2 3 4	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value	K1,K2, K1,K2,K K1,K2,K	K3,K4,K5, K3,K4,K5,K6			
1 2 3 4 5	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions	K1,K2, K1,K2, K1,K2,K K1,K2,K	K3,K4,K5 K3,K4,K5 K3,K4,K5,K6 3,K4,K5,K6			
1 2 3 4 5	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K1,K2, K1,K2,K K1,K2,K K1,K2,K	K3,K4,K5 K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6			
1 2 3 4 5 K1 -	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K	K3,K4,K5 K3,K4,K5 K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6			
1 2 3 4 5 <u>K1</u> -	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K	K3,K4,K5 K3,K4,K5 K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6			
1 2 3 4 5 K1 -	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration. Analyze characteristics of matrices and its different types, and the process of diagonalization. Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems Remember; K2 – Understand; K3 - Apply; K4 - Analyze; Textbooks George Arfken and Hans J Weber, 2012, Mathematical Methematical Methematic	K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 - Eva nods for I	K3,K4,K5 K3,K4,K5 K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate			

2	P.K. Chattopadhyay, 2013, Mathematical Physics (2nd edition), New Age, New								
Z	Delhi								
2	A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New								
3	Age International Pvt. Ltd., India								
4	B.D.Gupta,2009, <i>Mathematical Physics</i> (4 th edition),								
4	Vikas Publishing House, New Delhi.								
_	H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised								
5	Edition, S. Chand & Company Pvt. Ltd., New Delhi.								
	Reference Books								
1	E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New								
1.	Delhi,								
2	D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed.								
Ζ.	Narosa, New Delhi.								
	S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3.								
3.	E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading,								
	Massachusetts.								
1	P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated								
4.	East West, New Delhi.								
_	C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th								
5.	Edition, International Edition, McGraw-Hill, New York								
	Web Resources								
1.	www.khanacademy.org								
2.	https://youtu.be/LZnRlOA1_2I								
3.	http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath								
Λ	https://www.youtube.com/watch?v= 2jymuM70UU&list=PLhkiT R								
4.	YTEU27vS_SlED56gNjVJGO2qaZ								
5.	https://archive.nptel.ac.in/courses/115/106/115106086/								

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Strong-3 Medium-2 Low-1

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PS08	PSO9	PS010
PSO										
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PPHCC12	CLASSICAL MECHANICS AND RELATIVITY	Core	5	6	25	75	100

Pre-Requ	isites						
Fundamer	itals of mechanics, Foundation in mathematical methods.						
	Learning Objectives						
L1	To understand fundamentals of classical mechanics.						
10	To understand Lagrangian formulation of mechanics and apply	it to solve					
LZ	equation of motion.						
12	To understand Hamiltonian formulation of mechanics and apply	it to solve					
L3	equation of motion.						
L4	To discuss the theory of small oscillations of a system.						
L5	To learn the relativistic formulation of mechanics of a system.						
UNIT	Contents	No. of Hours					
	PRINCIPLES OF CLASSICAL MECHANICS						
	Mechanics of a single particle – mechanics of a system of particles						
т	 – conservation laws for a system of particles – constraints – 						
I	holonomic & non-holonomic constraints – generalized						
	coordinates – configuration space – transformation equations –						
	principle of virtual work.						
	LAGRANGIAN FORMULATION						
П	D'Alembert's principle – Lagrangian equations of motion for	18					
	conservative systems – applications: (i) simple pendulum (ii)	10					
	Atwood's machine (iii) projectile motion.						
	HAMILTONIAN FORMULATION						
	Phase space – cyclic coordinates – conjugate momentum –	1.2					
111	Hamiltonian function – Hamilton's canonical equations of motion	18					
	– applications: (1) simple pendulum (11) one dimensional simple						
	SMALL OSCILLATIONS						
	SMALL OSCILLATIONS						
IV	coordinates – frequencies of normal modes – linear triatomic	18					
	molecule						
	RELATIVITY						
	Inertial and non-inertial frames – Lorentz transformation						
	equations – length contraction and time dilation – relativistic						
v	addition of velocities – Einstein's mass-energy relation –	18					
	Minkowski's space – four vectors – position, velocity, momentum,	10					
	acceleration and force in for vector notation and their						
	transformations.						

	PROFESSIONAL COMPONENTS									
	Expert Lectures, Online Seminars - Webinars on Industria	l								
VI	Interactions/Visits, Competitive Examinations, Employabl	e and								
	Communication Skill Enhancement, Social Accountability	and								
	Patriotism.									
	Total	1	90							
	Course Outcomes	Knowle	edge Level							
CO	On completion of this course, students will									
1	Understand the fundamentals of classical mechanics.	K1,K2	,K3,K4,K5							
	Apply the principles of Lagrangian and Hamiltonian									
2	mechanics to solve the equations of motion of physical	K1,K2	,K3,K4,K5							
	systems.									
	Apply the principles of Lagrangian and Hamiltonian									
3	mechanics to solve the equations of motion of physical	K1,K2,K	3,K4,K5,K6							
	systems.									
	Analyze the small oscillations in systems and determine									
4	their normal modes of oscillations.	K1,K2,K3,K4,K5,K6								
	Understand and apply the principles of relativistic									
5	kinematics to the mechanical systems.	K1,K2,K	3,K4,K5,K6							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate										
	Textbooks									
1 H. Goldstein, 2002, <i>Classical Mechanics</i> , 3rd Edition, Pearson Edu.										
2	2 J. C. Upadhyaya, <i>Classical Mechanics</i> , Himalaya Publshing. Co. New Delhi.									
	R. Resnick, 1968. Introduction to Special Theory of Relativity. Wiley Eastern, New									
3	Delhi.									
	R. G. Takwala and P.S. Puranik. Introduction to Classical	Mechan	ics –Tata –							
4	McGraw Hill, New Delhi, 1980.									
5	N. C. Rana and P.S. Joag. Classical Mechanics - Tata McGraw	, Hill. 200	1							
	Reference Books	,								
1.	K. R. Symon, 1971, <i>Mechanics</i> , Addison Wesley, London.									
2.	S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Koll	kata.								
3.	Gupta and Kumar, <i>Classical Mechanics</i> , Kedar Nath.									
4	T.W.B. Kibble. <i>Classical Mechanics</i> . ELBS.									
5	Greenwood, <i>Classical Dynamics</i> , PHL New Delhi,									
0.	Web Resources									
	http://poincare.matf.bg.ac.rs/~zarkom/Book Mechanics (Goldst								
1.	ein Classical Mechanics ontimized.pdf									
	https://ndfcoffee.com/classical-mechanics-i-c-unadhyay-2	014-edit	ionndf-ndf-							
2.	free html		lonpui pui							
	1 https://pptel.ac.in/courses/122/106/122104	5027/								
3.	1. https://hptel.ac.in/courses/122/100/122100	50477								
4.	https://ocw.mit.edu/courses/physics/8-09-classical-mech 2014/lecture-notes/	anics-iii-	fall-							
5.	https://www.britannica.com/science/relativistic-mechanics									

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
C01	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Strong-3 Medium-2 Low-1

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHCC1P	PRACTICAL - I	Core	5	6	40	60	100	

Pre-Requisites								
Knowled	ge and hands on experience of basic general and electronics experim	nents of						
Physics								
	Learning Objectives							
L1	To understand the concept of mechanical behavior of materials ar	d calculation						
	of same using appropriate equations.							
L2	To calculate the thermodynamic quantities and physical properties	s of materials.						
L3	To analyze the optical and electrical properties of materials.							
UNIT	Contents	No. of Hours						
	(Any Twelve Experiments)							
	1. Determination of Young's modulus and Poisson's ratio by							
	Hyperbolic fringes - Cornu's Method							
	2. Determination of Viscosity of the given liquid – Meyer's disc							
	3. Measurement of Coefficient of linear expansion- Air wedge							
	Method							
	4. B-H loop using Anchor ring.							
	5. Determination of Thickness of the enamel coating on a wire by							
	6 Determination of Rydberg's Constant - Hydrogen Spectrum							
	7. FP Etalon							
	8. Determination of Thickness of air film Solar spectrum –							
	Hartmann's formula. Edser and Butler fringes.							
	9. Measurement of Band gap energy- Thermistor							
	10.Determination of Planck Constant – LED Method							
	11.Determination of Specific charge of an electron – Thomson's method.							
	12. Determination of Compressibility of a liquid using Ultrasonics							
	13.Determination of Wavelength, Separation of wavelengths -							
	Michelson Interferometer							
	14.GM counter – Characteristics, inverse square law and absorption coefficient.							
	15.Measurement of Conductivity - Four probe method.							
	16.Arc spectrum – Iron.							
	17.Molecular spectra – AlO band.							
	18. Measurement of wavelength of Diode Laser / He – Ne Laser							
	using Diffraction grating.							
	19.Determination of Diffraction pattern of light with circular							
	aperture using Diode/He-Ne laser.							
	20.Study the beam divergence, spot size and intensity profile of							
	Diode/He-Ne laser.							

	21. Measurements of Standing wave and standing wave	е со-						
	efficient, Law of Inverse square, Receiver end transm	nitter						
	behavior, Radiation Pattern - Microwave test bench							
	22.UV-Visible spectroscopy – Verification of Beer-Lambert's	s law						
	and identification of wavelength maxima – Extin	ction						
	coefficient							
	23.Construction of relaxation oscillator using UJT							
	24.FET CS amplifier- Frequency response, input imped	ance,						
	output impedance							
	25. Study of important electrical characteristics of IC/41.							
	1. V-1 Characteristics of different colours of LED.	work						
	2. Study of attenuation characteristics of when s bridge net	WOIK						
	2 Study of attenuation characteristics of Dhase shift not	work						
	and design of Phase shift escillator using On-Amp	WOIK						
	And design of Phase shift oscillator using Op-Amp.							
	4. Construction of Schimut trigger circuit using iC 741 for a given hysteresis- application as squarer							
	5. Construction of square wave Triangular wave generator using							
	IC 741							
	6. Construction of a quadrature wave using IC 324							
	7. Construction of pulse generator using the IC 741 – application							
	as frequency divider							
	8. Construction of Op-Amp- 4 bit Digital to Analog converter							
	(Binary Weighted and R/2R ladder type)							
	9. Study of Binary to Gray and Gray to Binary code conversi	on.						
	10.Study of R-S, clocked R-S and D-Flip flop using NAND gates							
	11. Study of J-K, D and T flip flops using IC 7476/7473							
	12.Arithmetic operations using IC 7483- 4-bit binary add	ition						
	and subtraction.							
	13. Study of Arithmetic logic unit using IC /4181.							
	Tetal							
	Course Outcomes	Knov	vledge Level					
CO	On completion of this course, students will	mov	reuge Lever					
	Understand the strength of material using Young's modulus							
1	and Conduct experiments on applications of FET and UIT	K1,ŀ	K2,K3,K4,K5					
	Acquire knowledge of thermal behaviour of the materials							
2	and Analyze various parameters related to operational	K1.F	X2.K3.K4.K5					
_	amplifiers.	,-						
	Understand theoretical principles of magnetism through							
3	the experiments and Understand the concepts involved in	K1 K2	K3 K4 K5 K6					
5	arithmatic and logical circuits using IC's	111,112	,110,111,110,110					
	Acquire knowledge about arc spectrum and applications of							
4	laser and Acquire knowledge about Combinational Logic	K1 K2	K3 K4 K5 K6					
1	Circuits and Sequential Logic Circuits	111,112	,110,111,110,110					
	Improve the analytical and observation ability in Physics							
5	Experiments and Analyze the applications of counters and	K1 K2	K3 KV KC KC					
5	registers	111,112	,13,13,17,13,10					
V 1	- Romombor: K2 - Undorstand: K2 - Apply: K1 - Apply: co	K5 _ F,	valuato					
	- Kemember, K2 - Onuerstanu, K5 - Appry; K4 - Anaryze;	ND - 6	aiuale					

	Textbooks								
1	Practical Physics, Gupta and Kumar, Pragati Prakasan.								
2	Kit Developed for doing experiments in Physics- Instruction manual,								
L	R. Srinivasan K.R Priolkar, Indian Academy of Sciences.								
2	Electronic Laboratory Primer a design approach, S. Poornachandra,								
3	B. Sasikala, Wheeler Publishing, New Delhi.								
4	Electronic lab manual Vol I, K ANavas, Rajath Publishing.								
5	Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition								
Reference Books									
1.	Advanced Practical Physics, S.P Singh, PragatiPrakasan.								
n	An advanced course in Practical Physics, D. Chattopadhayay, C.R Rakshit, New								
Ζ.	Central Book Agency Pvt. Ltd								
2	Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy								
5.	Edition.								
1	A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia)								
4.	Pvt. Ltd.								
5.	Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.								

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2

Strong-3 Medium-2 Low-1

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PPHDE11	LINEAR AND DIGITAL ICS AND APPLICATIONS	Elective	4	6	25	75	100

Pre-Requ	isites							
Knowledg	e of semiconductor devices, basic concepts of digital and analog elect	ronics						
	Learning Objectives							
L1	L1 To introduce the basic building blocks of linear integrated circuits.							
L2	To teach the linear and non-linear applications of operational am	plifiers.						
L3	To introduce the theory and applications of PLL.							
	To introduce the concepts of waveform generation and introduce	one special						
L4	function ICs.							
L5	Exposure to digital IC's							
UNIT	Contents	No. of Hours						
	INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER							
	Introduction, Classification of IC's, basic information of Op-Amp							
Ι	741 and its features, the ideal Operational amplifier, Op-Amp	18						
	internal circuit and Op-Amp. Characteristics.							
	APPLICATIONS OF OP-AMP							
	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous							
	equations and differential equations, Instrumentation amplifiers, V to I and I to V converters.							
т								
11	NON-LINEAR APPLICATIONS OF OP-AMP:							
	Sample and Hold circuit, Log and Antilog amplifier, multiplier and							
	divider, Comparators, Schmitt trigger, Multivibrators, Triangular							
	and Square waveform generators.							
	ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS							
	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order,							
	2nd order low pass and high pass filters, band pass, band reject							
	and all pass filters.							
III	TIMER AND PHASE LOCKED LOOPS:	18						
	introduction to IC 555 timer, description of functional diagram,							
	trigger DL introduction basic principle phase							
	detector/comparator voltage controlled oscillator (IC 566) low							
	nass filter monolithic PLL and applications of PLL							
	VOLTAGE REGULATOR & D to A AND A to D CONVERTERS							
	VOLTAGE REGULATOR: Introduction. Series Op-Amp regulator. IC							
IV	Voltage Regulators, IC 723 general purpose regulators. Switching	18						
	Regulator.							
	D to A AND A to D CONVERTERS:							

	Introduction, basic DAC techniques -weighted resistor DAC	C, R-2R							
	ladder DAC, inverted R-2R DAC, A to D converters -parallel	l							
	comparator type ADC, counter type ADC, successive								
	approximation ADC and dual slope ADC, DAC and ADC								
	Specifications.								
	CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74	4XX ICs							
	& SEQUENTIAL CIRCUITS USING TTL 74XX ICs								
	CMOS LOGIC: CMOS logic levels, MOS transistors, Basic CM	OS							
	Inverter, NAND and NOR gates, CMOS AND-OR-INVERT an	d OR-							
	AND-INVERT gates, implementation of any function using CMOS								
	logic. COMBINATIONAL CIRCUITS USING TTL 74XX ICs: St	udv of							
	logic gates using 74XX ICs. Four-bit parallel adder (IC 7483	3).							
V	Comparator (IC 7485), Decoder (IC 74138, IC 74154), BCD	to	18						
	7-segment decoder (IC7447). Encoder (IC74147). Multiple	exer							
	(IC74151). Demultiplexer (IC 74154).	-							
	SEQUENTIAL CIRCUITS USING TTL 74XX ICs:								
	Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shi	ft							
	Register (IC 74194). 4- bit asynchronous binary counter (I	C							
	7493).								
	PROFESSIONAL COMPONENTS								
	Expert Lectures Online Seminars - Webinars on Industrial								
VI	Interactions/Visits, Competitive Examinations, Employable and								
	Communication Skill Enhancement Social Accountability and								
	Communication Skill Ennancement, Social Accountability and								
	Fall IUUSIII								
	Total		90						
	Total Course Outcomes	Knowle	90 edge Level						
СО	Total Course Outcomes On completion of this course, students will	Knowle	90 edge Level						
СО	Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit	Knowle	90 edge Level						
CO	Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits	Knowle K1,K2	90 edge Level .K3,K4,K5						
CO	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	Knowle K1,K2	90 edge Level .K3,K4,K5						
CO	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear	Knowle K1,K2	90 edge Level .K3,K4,K5						
CO 1	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active	Knowle K1,K2,	90 edge Level .K3,K4,K5 .K3,K4,K5						
CO 1 2	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	Knowle K1,K2, K1,K2,	90 edge Level .K3,K4,K5 .K3,K4,K5						
CO 1 2	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to	Knowle K1,K2, K1,K2,	90 edge Level .K3,K4,K5 .K3,K4,K5						
CO 1 2	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can	Knowle K1,K2, K1,K2,	90 edge Level .K3,K4,K5 .K3,K4,K5						
CO 1 2 3	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can coluon problems related to it	Knowld K1,K2, K1,K2,	90 edge Level .K3,K4,K5 .K3,K4,K5 .3,K4,K5,K6						
CO 1 2 3	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	Knowk K1,K2, K1,K2, K1,K2,K	90 edge Level .K3,K4,K5 .K3,K4,K5 .3,K4,K5,K6						
CO 1 2 3 4	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A	Knowle K1,K2, K1,K2,K K1,K2,K	90 edge Level .K3,K4,K5 .K3,K4,K5 .3,K4,K5,K6 3,K4,K5,K6						
CO 1 2 3 4	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters.	Knowld K1,K2, K1,K2,K K1,K2,K	90 edge Level .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6						
CO 1 2 3 4	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic,	Knowk K1,K2, K1,K2,K K1,K2,K K1,K2,K	90 edge Level .K3,K4,K5 .K3,K4,K5 .K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6						
CO 1 2 3 4 5	TotalCourse OutcomesOn completion of this course, students willLearn about the basic concepts for the circuitconfiguration for the design of linear integrated circuitsand develops skill to solve problemsDevelop skills to design linear and non-linearapplications circuits using Op-Amp and design the activefilters circuits.Gain knowledge about PLL, and develop the skills todesign the simple circuits using IC 555 timer and cansolve problems related to it.Learn about various techniques to develop A/D and D/Aconverters.Acquire the knowledge about the CMOS logic,combinational and sequential circuits	Knowle K1,K2, K1,K2,K K1,K2,K K1,K2,K	90 edge Level .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6						
CO 1 2 3 4 5 K1·	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic, combinational and sequential circuits Remember; K2 – Understand; K3 - Apply; K4 - Analyze; 1	Knowld K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 – Eva	90 edge Level .K3,K4,K5 .K3,K4,K5 .K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate						
CO 1 2 3 4 5 K1 ·	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic, combinational and sequential circuits Remember; K2 – Understand; K3 - Apply; K4 - Analyze; Textbooks	Knowle K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 – Eva	90 edge Level .K3,K4,K5 .K3,K4,K5 .K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate						
CO 1 2 3 4 5 K1 ·	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic, combinational and sequential circuits Remember; K2 – Understand; K3 - Apply; K4 - Analyze; I D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated	Knowle K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 - Eva Circuit, 4	90 edge Level .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate						
CO 1 2 3 4 5 K1 · 1	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic, combinational and sequential circuits Remember; K2 – Understand; K3 - Apply; K4 - Analyze; D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated New Age International Pvt. Ltd., New Delhi, India	Knowle K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 - Eva Circuit, 4	90 edge Level .K3,K4,K5 .K3,K4,K5 .K3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate 4th edition,						
CO 1 2 3 4 5 K1 · 1 2	Total Total Course Outcomes On completion of this course, students will Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits. Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it. Learn about various techniques to develop A/D and D/A converters. Acquire the knowledge about the CMOS logic, combinational and sequential circuits Remember; K2 – Understand; K3 - Apply; K4 - Analyze; Textbooks D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated New Age International Pvt. Ltd., New Delhi, India Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated	Knowle K1,K2, K1,K2,K K1,K2,K K1,K2,K K1,K2,K K5 – Eva Circuit, 4	90 edge Level .K3,K4,K5 .K3,K4,K5 3,K4,K5,K6 3,K4,K5,K6 3,K4,K5,K6 luate 4th edition, ircuits, 4th						

2	B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S.
3	Chand & Co.
	V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th
4	Edition.
E E	V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog),
5	S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.
	Reference Books
1	Sergio Franco (1997), Design with operational amplifiers and analog integrated
1.	circuits, McGraw Hill, New Delhi.
2	Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley
Ζ.	International, New Delhi.
	Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata
3.	McGraw Hill, New Delhi
	Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New
4.	Delhi.
F	Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint
э.	(2000)
	Web Resources
1.	https://nptel.ac.in/course.html/digital circuits/
2.	https://nptel.ac.in/course.html/electronics/operational amplifier/
2	https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-
3.	effect-controlled-thyristors/
4.	https://www.electrical4u.com/applications-of-op-amp/
5.	https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO / PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
ru										
C01	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
C01	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Strong-3 Medium-2 Low-1

					Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PPHGE11	MATERIALS SCIENCE	Elective	3	6	25	75	100

Pre-Requ	isites						
Basic know	vledge on different types of materials						
	Learning Objectives						
L1 To gain knowledge on optoelectronic materials							
L2	To learn about ceramic processing and advanced ceramics						
L3	To understand the processing and applications of polymeric materi	als					
L4	To gain knowledge on the fabrication of composite materials						
L5	To learn about shape memory alloys, metallic glasses and nanomate	erials					
UNIT	Contents	No. of Hours					
	OPTOELECTRONIC MATERIALS						
	Importance of optical materials – properties: Band gap and lattice						
	matching - optical absorption and emission - charge injection,						
I	quasi-Fermi levels and recombination – optical absorption, loss	10					
	and gain. Optical processes in quantum structures: Inter-band and	10					
	intra-band transitions Organic semiconductors. Light propagation						
	in materials – Electro-optic effect and modulation, electro-						
	absorption modulation – exciton quenching.						
	CERAMIC MATERIALS						
	Ceramic processing: powder processing, milling and sintering –						
II	structural ceramics: zirconia, almina, silicon carbide, tungsten	18					
	carbide - electronic ceramics - refractories - glass and glass						
	ceramics						
	POLYMERIC MATERIALS						
	Polymers and copolymers – molecular weight measurement –						
	synthesis: chain growth polymerization – polymerization						
III	techniques – glass transition temperature and its measurement –	18					
	viscoelasticity – polymer processing techniques – applications:						
	conducting polymers, biopolymers and high temperature						
	polymers.						
	COMPOSITE MATERIALS						
	Particle reinforced composites – fiber reinforced composites –						
IV	mechanical behavior – fabrication methods of polymer matrix	18					
	composites and metal matrix composites – carbon/carbon						
	composites: fabrication and applications.						
	NEW MATERIALS						
V	Shape memory alloys: mechanisms of one-way and two-way shape	18					
	memory effect, reverse transformation, thermo-elasticity and						

	pseudo-elasticity, examples and applications -bulk metallic glass:								
	criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification_size_effect_on_structural								
	behavior - nanomaterials: classification, size effect on st	ructural							
	and functional properties, processing and properties	of Nano							
	crystalline materials, single walled and multi walled	carbon							
	nanotubes								
	PROFESSIONAL COMPONENTS								
Expert Lectures, Online Seminars - Webinars on Industrial									
VI Interactions/Visits, Competitive Examinations, Employable and									
	Communication Skill Enhancement, Social Accountability and								
	Patriotism.								
	Total		90						
	Course Outcomes	Knowl	edge Level						
CO	On completion of this course, students will								
1	Acquire knowledge on optoelectronic materials	K1,K2	,K3,K4,K5						
2	Be able to prepare ceramic materials	K1,K2	,K3,K4,K5						
2	Be able to understand the processing and applications of	K1 K2 K	3 K4 K5 K6						
	polymeric materials	K1,K2,K	3,14,13,10						
4	Be aware of the fabrication of composite materials	K1,K2,K	3,K4,K5,K6						
5	Be knowledgeable of shape memory alloys, metallic								
	glasses and nanomaterials	111,112,11	5,121,125,120						
K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K5 – Eva	luate						
	Textbooks	C							
1	Jasprit Singh, Electronic and optoelectronic properties	s of sem	liconductor						
	structures, Cambridge University Press, 2007	_							
2	P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008	3.							
3	V. Raghavan, 2003, Materials Science and Engineering, 4	th Editio	n, Prentice-						
	Hall India, New Delhi(For units 2,3,4 and 5)								
1.	G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Sci	ience, Ta	ta McGraw-						
Т	Hill								
5	M. Arumugam, 2002, Materials Science, 3 rd revised Edition,	Anurath	a Agencies						
	Reference Books								
1	B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Text	book of N	anoscience						
	and Nanotechnology. Springer- Verlag, 2012.								
	K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds).	Shape M	lemory and						
2.	Super Elastic Alloys: Technologies and Applications. Wo	od head	Publishing						
	Limited, 2011.								
2	Lawrence H. Van Vlack, 1998. Elements of Materials Scien	ice and E	ngineering,						
э.	6 th Edition, Second ISE reprint, Addison-Wesley.								
4	H. Iabch and H. Luth, 2002, Solid State Physics – An Introdu	ction to P	rinciples of						
4.	Materials Science, 2 nd Edition, Springer.								
-	D. Hull & T. W. Clyne, An introduction to composite materia	als, Camb	ridge						
5.	University Press, 2008.								
	Web Resources								
1.	https://onlinecourses.nptel.ac.in/noc20_mm02/preview								
2.	https://nptel.ac.in/courses/112104229								

3.	https://archive.nptel.ac.in/courses/113/105/113105081
4.	https://nptel.ac.in/courses/113/105/113105025/
Ę	https://eng.libretexts.org/Bookshelves/Materials Science/Supplemental M
э.	odules_(Materials_Science)/Electronic_Properties/Lattice_Vibrations

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO / PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
C01	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Strong-3 Medium-2 Low-1

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PS08	PSO9	PSO1
PSO										0
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

						Mark	Marks	
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHCC21	STATISTICAL MECHANICS	Core	5	6	25	75	100	

Pre-Requi	isites								
Laws of the	ermodynamics, phase transition, entropy, ensembles, partition funct	ion,							
classical ar	nd quantum statistics, thermal equilibrium, Brownian motion								
	Learning Objectives								
L1	To acquire the knowledge of thermodynamic potentials and to	understand							
	phase transition in thermodynamics								
L2	To identify the relationship between statistic and thermodynamic of	luantities							
10	To comprehend the concept of partition function, canonical	and grand							
L3	' ³ canonical ensembles								
L4	To grasp the fundamental knowledge about the three types of statis	stics .							
	To get in depth knowledge about phase transitions and flue	ctuation of							
L5	thermodynamic properties that vary with time								
UNIT	Contents	No. of							
		Hours							
I	PHASE TRANSITIONS								
	Thermodynamic potentials - Phase Equilibrium - Gibb's phase								
	rule - Phase transitions and Ehrenfest's classifications – Third law	18							
	of Thermodynamics. Order parameters – Landau's theory of								
	phase transition - Critical indices - Scale transformations and								
	dimensional analysis.								
	STATISTICAL MECHANICS AND THERMODYNAMICS								
	Foundations of statistical mechanics - Specification of states of a								
п	system - Micro canonical ensemble - Phase space – Entropy -	18							
	Connection between statistics and thermodynamics – Entropy of	10							
	an ideal gas using the micro canonical ensemble - Entropy of								
	mixing and Gibb's paradox.								
	CANONICAL AND GRAND CANONICAL ENSEMBLES								
тт	Trajectories and density of states - Liouville's theorem - Canonical	18							
	and grand canonical ensembles - Partition function - Calculation	10							
	of statistical quantities - Energy and density fluctuations.								
	CLASSICAL AND QUANTUM STATISTICS								
	Density matrix - Statistics of ensembles - Statistics of								
IV	indistinguishable particles - Maxwell-Boltzmann statistics -	18							
1 V	Fermi-Dirac statistics – Ideal Fermi gas – Degeneracy - Bose-								
	Einstein statistics - Plank radiation formula - Ideal Bose gas -								
	Bose-Einstein condensation.								
V	REAL GAS, ISING MODEL AND FLUCTUATIONS	18							

Cluster expansion for a classical gas - Virial equation of state –										
	Calculation of the first Virial coefficient in the cluster expa	nsion -								
	Ising model - Mean-field theories of the Ising model in three	ee, two								
	and one dimensions - Exact solutions in one dimension.									
	Correlation of space-time dependent fluctuations - Fluctuations									
	and transport phenomena - Brownian motion - Langevin's theory									
	- Fluctuation-dissipation theorem - The Fokker-Planck equation									
	PROFESSIONAL COMPONENTS									
	Expert Lectures, Online Seminars - Webinars on Industria	1								
VI	Interactions/Visits Competitive Examinations Employabl	e and								
	Communication Skill Enhancement, Social Accountability	and								
	Patriotism									
	Total		90							
	Course Outcomes	Knowle	edge Level							
CO	On completion of this course, students will									
	To examine and elaborate the effect of changes in									
1	thermodynamic quantities on the states of matter during	K1,K2	K3,K4,K5							
	phase transition									
	To analyze the macroscopic properties such as pressure,									
	volume, temperature, specific heat, elastic moduli etc.									
2	using microscopic properties like intermolecular forces,									
	chemical bonding, atomicity etc.	K1,K2,K3,K4,K5								
	Describe the peculiar behaviour of the entropy by mixing									
	two gases Justify the connection between statistics and									
	thermodynamic quantities									
2	Differentiate between canonical and grand canonical									
3	thermodynamical quantities and partition function	<u> </u>								
	To recall and apply the different statistical concepts to									
	analyze the behaviour of ideal Fermi gas and ideal Rose									
4	gas and also to compare and distinguish between the	K1,K2,K3,K4,K5,K6								
	three types of statistics.									
	To discuss and examine the thermodynamical behaviour									
5	of gases under fluctuation and also using Ising model	K1,KZ,K	3,K4,K5,K6							
K1 ·	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K5 – Eva	luate							
	Textbooks									
1	S. K. Sinha, 1990, Statistical <i>Mechanics</i> , Tata McGraw Hill, N	ew Delhi	•							
2	B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i> , Sev	cond Edit	ion New							
Z	Age International, New Delhi.									
0	J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i> : An Introductory Text, Allied									
3	Publication, New Delhi.									
	F. Reif. 1965. Fundamentals of Statistical and Thermal Physi	ics. McGra	w -Hill.							
4	New York.	,	,							
	M K Zemansky 1968 Heat and Thermodynamics 5th editic	n McGra	w-Hill							
5 Now York										
	Deference Rooks									
	R K Pathria 1996 Statistical Mechanics 2nd edition Rutte	r Worth	leinemann							
1.	Naw Dolhi	· · · · · · · · · · · · · · · · · · ·	iememann,							

2.	L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i> , Pergamon Press, Oxford.					
3.	K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London					
	W. Greiner, L. Neise and H. Stoecker, Thermodynamics and Statistical Mechanics,					
4.	Springer Verlang, New York.					
5.	A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and Allied, Kolkata.					
Web Resources						
1.	https://byjus.com/chemistry/third-law-of-thermodynamics/					
2.	https://web.stanford.edu/~peastman/statmech/thermodynamics.html					
3.	https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics					
4.	https://en.wikipedia.org/wiki/Grand_canonical_ensemble					
5.	https://en.wikipedia.org/wiki/Ising_model					

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO / PO	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Strong-3 Medium-2 Low-1

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO1 0
C01	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

					HOULS CIAE	Mark	Marks	
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHCC22	QUANTUM MECHANICS – I	Core	5	6	25	75	100	

Pre-Req	uisites						
Newton's	a laws of motion, Schrodinger's equation, integration, differentiation.						
	Learning Objectives						
11	To develop the physical principles and the mathematical background	l important					
L 1	to quantum mechanical descriptions.						
L2	To describe the propagation of a particle in a simple, one-dimensional potential.						
L3	To formulate and solve the Schrodinger's equation to obtain eigenv	vectors and					
	energies for particle in a three-dimensional potential.						
L4	To explain the mathematical formalism and the significance of co	onstants of					
	motion, and see their relation to fundamental symmetries in nature	intional					
L5	and WKP methods for colving the Schrödinger equation	lational					
		Noof					
UNIT	Contents	NO. 01 Hours					
	BASIC FORMALISM	nours					
	Interpretation of the wave function – Time dependent Schrodinger						
	equation – Time independent Schrodinger equation – Stationary						
I	states – Ehrenfest's theorem – Linear vector space – Linear	18					
-	operator – Eigen functions and Eigen Values – Hermitian Operator	10					
	– Postulates of Quantum Mechanics – Simultaneous measurability						
	of observables – General Uncertainty relation.						
	ONE DIMENSIONAL AND THREE-DIMENSIONAL ENERGY EIGEN						
	VALUE PROBLEMS						
	Square – well potential with rigid walls – Square well potential						
	with finite walls – Square potential barrier – Alpha emission –	10					
11	Bloch waves in a periodic potential – Kronig-penny square – well	18					
	periodic potential – Linear harmonic oscillator: Operator method –						
	Particle moving in a spherically symmetric potential – System of						
	two interacting particles – Hydrogen atom – Rigid rotator.						
	GENERAL FORMALISM						
	Dirac notation – Equations of motions – Schrodinger						
	representation – Heisenberg representation – Interaction						
111	representation – Coordinate representation – Momentum						
	representation – Symmetries and conservation laws – Unitary						
	transformation – Parity and time reversal.						
	APPROXIMATION METHODS						
IV	Time independent perturbation theory for non-degenerate energy						
]	levels – Degenerate energy levels – Stark effect in Hydrogen atom –						

approximation - Connection formulae (no derivation) - WKB quantization - Application to simple harmonic oscillator. Image: Connection to simple harmonic oscillator. V ANGULAR MOMENTUM Eigenvalue spectrum of general angular momentum - Ladder operators and their algebra - Matrix representation - Spin angular momentum - Addition of angular momenta - CG Coefficients - Symmetry and anti - symmetry of wave functions - Construction of wave-functions and Pauli's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 CO On completion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K5,K4		Ground and excited state – Variation method – Helium atom – WKB									
quantization - Application to simple harmonic oscillator. ANGULAR MOMENTUM Eigenvalue spectrum of general angular momentum - Ladder operators and their algebra - Matrix representation - Spin angular momentum - Addition of angular momenta - CG Coefficients - Symmetry and anti - symmetry of wave functions - Construction of wave-functions and Paul's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Course Outcomes Knowledge Lev On completion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum Mechanics which serve to formalize the rules of quantum Mechanics which serve to formalize the rules of solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, S 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, S 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, S 6 Arulbas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. S 3 David J Griffiths, Introduction to Quantum Mechanics: Theory and Applications, 4 th Editi		approximation – Connection formulae (no derivation) – WK	B								
ANGULAR MOMENTUM Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Course Outcomes Knowledge Lee CO On completion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum Mechanics K1,K2,K3,K4,K5,K3,K4,K5,K3,K4,K5		quantization – Application to simple harmonic oscillator.									
V Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Course Outcomes Knowledge Lex O On completion of this course, students will Demonstrates a clear understanding of the basic postulates quantum Mechanics which serve to formalize the rules of quantum mechanics which serve to formalize the rules of solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, Can discuss the various representations, space time symmetries and formulations of time evolution for apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, K1,K2,K3,K4,K5, C A ruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. B David J Griffiths, Introduction to Quantum Mechanics. Theory and Fields, 1* Editi S.Chand& Co, New Delhi, 1982. S A Gatak and S. Lokanathan, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. Ne Kerence Books E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. Ne Kerence Books E. Merzbacher, Quantum		ANGULAR MOMENTUM									
v operators and their algebra – Matrix representation – Spin angular momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Communication Skill Enhancement, Social Accountability and Patriotism. 90 Comrompletion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K5, 1 able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, spectral line splitting. K1,K2,K3,K4,K5, 2 Gou9. <		Eigenvalue spectrum of general angular momentum – Ladd	er								
V momentum – Addition of angular momenta – CG Coefficients – Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle. 18 PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Co On completion of this course, students will 90 Course Outcomes Knowledge Lex CO On completion of this course, students will 90 L Expert Lectures, online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 CO On completion of this course, students will 90 L Expert Lectures a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K5, 2 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyz		operators and their algebra – Matrix representation – Spin a	angular								
Symmetry and anti – symmetry of wave functions – Construction of wave-functions and Pauli's exclusion principle. PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. Q0 Total 90 Course Outcomes Knowledge Lex C0 On completion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 1 of quantum Mechanics K1,K2,K3,K4,K5, 2 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain splitting. K1,K2,K3,K4,K5, 6 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanica 2 ^{ne} edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Intro	V	momentum – Addition of angular momenta – CG Coefficient	····Barar	18							
by minery and by marked sector of the construction of t		Symmetry and anti – symmetry of wave functions – Constru	iction of								
Wave functions and rank property interplet. PROFESSIONAL COMPONENTS Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Total 90 Course Outcomes Knowledge Lex Coor on ompletion of this course, students will Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K Is able to apply and analyze the Schrodinger equation to 2 solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechaniz 2009. Garvid J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 200 3 David J Griffiths, Introduction to Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan, India, 1984. Reference Books 4 S. Gupta and ID Gupta, Ad		wave-functions and Pauli's exclusion principle									
Interestionation commonstructures and the seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Total 90 Course Outcomes Knowledge Lex Course Outcomes Knowledge Lex On completion of this course, students will Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems a discuss the various representations, space time symmetries and formulations of time evolution X1,K2,K3,K4,K5, To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics. 2nd edition, Prentice Hall of India, New Del 2009. Suid Griffiths, Introduction to Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan, India, 1984. Cerese Books		PROFESSIONAL COMPONENTS									
Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism. 90 Communication Skill Enhancement, Social Accountability and Patriotism. 90 Communication of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics 81 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems 81,K2,K3,K4,K5, K1,K2,K3,K4,K5, Gan discuss the various representations, space time symmetries and formulations of time evolution 81,K2,K3,K4,K5, To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. 81,K2,K3,K4,K5, K1,K2,K3,K4,K5, P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics 2009. 90, SL Gupta and ID Gupta, Advanced Quantum Mechanics. 4th edition, Pearson, 20 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi S.Chand& Co, New Delhi, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4theEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V.K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ni Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pe		Export Loctures Online Seminars - Webinars on Industrial									
Interactions/visits, competitive Examinations, Employable and Patriotism. Implement Social Accountability and Patriotism. 0 Total 90 Communication Skill Enhancement, Social Accountability and Patriotism. 90 Course Outcomes Knowledge Lex O O completion of this course, students will 90 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2009. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editis S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th	VI	Interactions (Visite Competitive Examinations Employable	and								
Communication skin Enhancement, social Accountability and Patriotism. Image: Patriotism. Total 90 Course Outcomes Knowledge Lex CO On completion of this course, students will Knowledge Lex 1 of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 1 able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. C 2 Goupt David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 3 L. Mathew and S. Lokanathan, Quantum Mechanics: Theory and Fields, 1 st Editi S.Chand& Co., New Delhi, 1982. 4 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. P. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N: Delhi, 1985. <td>VI</td> <td>Communication Shill Enhancement Social Accountability or</td> <td>allu</td> <td></td>	VI	Communication Shill Enhancement Social Accountability or	allu								
Patriousm. Total 90 Course Outcomes Knowledge Lex CO On completion of this course, students will Image: State of quantum mechanics which serve to formalize the rules of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 1 be monstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K5,K4		Communication Skill Ennancement, Social Accountability and									
Course Outcomes Knowledge Lev CO On completion of this course, students will Example 1 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 2 solve one dimensional problems and three dimensional symmetries and formulations of time evolution K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. C. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books 1 P. K. Thankappan, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New YO 1970. 2 V. K. Thankappan, Quant		Patriotism.									
Course outcomes Knowledge Lev CO On completion of this course, students will Endowledge Lev 1 Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 2 solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 Sopply non-commutative algebra for topics such as angular and spin angular momentum and hence explain K1,K2,K3,K4,K5, 6 Various quantum Mechanics, X3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 S. Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. 1 E. Merzbacher, Qu			IZ-s s]	90							
Construction of this course, students with Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2009. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2009. Bavid J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi S.Chand& Co., New Delhi, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. V. K. Thankappan, Quantum Mechanics, 2nd Edition, S, 1st edition, Pergomon Preg- and L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Preg- and L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Preg-	<u> </u>	Course Outcomes	Knowle	eage Level							
1 Definitions Definitions K1,K2,K3,K4,K 1 of quantum mechanics which serve to formalize the rules of quantum Mechanics K1,K2,K3,K4,K 2 solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain splitting. K1,K2,K3,K4,K5, 6 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2n4edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 K1 K1 Reference Books 5 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. St. K Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N. Delhi, 1985. 4 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Precond Precompone Precompone Pr	10	On completion of this course, students will									
1 Orquantum Mechanics K1,K2,K3,K4,K 2 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K5, 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1.K2,K3,K4,K5, 4 Various quantum Mechanics, X3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 K1 of the complexity of the	1	of quantum machanics which some to formalize the rules of	V1 V2								
Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. K1 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. S1 3 David J Griffiths, Introduction to Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan, 1984. 5 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. Y. K. Thankappan, Quantum Mechanics, 2nd Edition, John Wiley Eastern Ltd, N. Delhi, 1985. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N. Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pre	1	of quantum mechanics which serve to formalize the rules of	K1,K2,K3,K4,K5								
2 solve one dimensional problems and three dimensional problems K1,K2,K3,K4,K 3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 6 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 S. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, 1984. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N. Delhi, 1985. 3 L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Predimination of the sector of the se		Is able to apply and applyze the Schrodinger equation to									
2 Joine offer unicensional problems and unice unicensional problems RT,R2,R3,R4,R5, problems 3 Can discuss the various representations, space time symmetries and formulations of time evolution RT,R2,R3,R4,R5, raise and symmetries and formulations of time evolution 4 Can formulate and analyze the approximation methods for various quantum mechanical problems R1,K2,K3,K4,K5, raise angular and spin angular momentum and hence explain spectral line splitting. 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. R1,K2,K3,K4,K5, spectral line splitting. 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editis S.Chand& Co, New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. 1 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N. Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pregremoremotics	2	solve one dimensional problems and three dimensional	K1 K2	K3 K4 K5							
3 Can discuss the various representations, space time symmetries and formulations of time evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2nd edition, 2reduition (37th Reprint), Tata McGraw-Hill, New Delhi, 2010. K1 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 S.Chand& Co., New Delhi, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Predomines	2	nrohlems	111,112	,13,13,13							
3 Gan ansenso and contrations of the evolution K1,K2,K3,K4,K5, 4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editios, S. Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presson P		Can discuss the various representations, space time									
4 Can formulate and analyze the approximation methods for various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 6 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate 7 Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2 009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 S. Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presson P	3	symmetries and formulations of time evolution K1,K2,K3,K4,K5,K6									
4 various quantum mechanical problems K1,K2,K3,K4,K5, 5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, 6 K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks K1,K2,K3,K4,K5, 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 S. Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editive S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. 7 Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, N. Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presson		Can formulate and analyze the approximation methods for									
To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, spectral line splitting. K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editive S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. 1 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Nu Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presenter States and S. States and States and States and States and States and States and	4	various quantum mechanical problems									
5 angular and spin angular momentum and hence explain spectral line splitting. K1,K2,K3,K4,K5, spectral line splitting. K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st Edition, S. Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presson Presson		To apply non-commutative algebra for topics such as									
spectral line splitting. K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanic 2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st Editic 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4 th Edition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Preside and the Methanics	5	angular and spin angular momentum and hence explain	K1,K2,K	3,K4,K5,K6							
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate Textbooks 1 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presson		spectral line splitting.									
Textbooks1P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010.2G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009.3David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 204SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st Editi S.Chand& Co., New Delhi, 1982.5A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.Reference Books1.E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970.2.V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Delhi, 1985.3.L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pre	K1	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K5 – Eva	luate							
1P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechani 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010.2G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009.3David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 204SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi S.Chand& Co., New Delhi, 1982.5A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.1.E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970.2.V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Delhi, 1985.3.L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pre		Textbooks									
1 2ndedition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010. 2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Del 2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editions, S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	1	P. M. Mathews and K. Venkatesan, A Text book of Q	uantum	Mechanics,							
2 G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delayon 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S. Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th Edition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Presidential and the presi		2 nd edition(37th Reprint),Tata McGraw-Hill, New Delhi, 2010									
2009. 3 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. 6 Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	2	G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall	of India,	New Delhi,							
 David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 20 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi S.Chand& Co., New Delhi, 1982. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press 		2009.		2211							
4 SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Editi 5 S.Chand& Co., New Delhi, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. 6 Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	3	David J Griffiths, Introduction to Quantum Mechanics. 4th edi	ition, Pea	rson, 2011.							
S.Chand& Co., New Delni, 1982. 5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, Ne Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	4	SL Gupta and ID Gupta, Advanced Quantum Theory and	Fields,	1 st Edition,							
5 A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press		S. Chataly and S. Lakanathan Quantum Maghaniag. Theory of	ad Applia	ationa							
4th Edition, Macmilian, India, 1984. Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1. 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	5	A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications,									
Reference Books 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press		4 ^m Edition, Macmilian, India, 1984.									
1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New Yo 1. 1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No Delhi, 1985. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press		Reference Books		Nasa Vasla							
1970. 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, No. Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press	1.	E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley	and Sons	, New York,							
2. Delhi, 1985. 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pre		1970. V. K. Thankannan, Quantum Machanica, 2nd Edition, Wiley F	Factorn	Itd Now							
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Pre	2.	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd,									
3. Januar and E. M. Ensinez, Quantum Mechanics, 1st eution, reigonion Pre		Definit, 1900. L. D. Landau and F. M. Lifebitz, Quantum Machanica, 1st adition, Dangaman Press.									
1 Control 1976	3.	Oxford 1976	on, i ei gu	,							
4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999	4.	S. N. Biswas, Quantum Mechanics, Books and Allied Ltd. Koll	kata. 19	999.							
Oxford, 1976.	2. 3.	Delhi, 1985. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st editi Oxford, 1976.	on, Pergo	omon Press,							

F	V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International
5.	Ltd, Oxford , 2011.
	Web Resources
1.	http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf
2.	http://www.feynmanlectures.caltech.edu/III_20.html
3.	http://web.mit.edu/8.05/handouts/jaffe1.pdf
Λ	https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/Lecture_
4.	1.pdf
5.	https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
C05	3	3	3	2	3	S	3	3	2	3

Strong-3 Medium-2 Low-1

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PS08	PSO9	PSO1
PSO										0
C01	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

		e Title Category Signature		Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total
23PPHCC2P	PRACTICAL - II	Core	3	6	40	60	100

Pre-Requ	isites							
Knowledg	e and handling of basic general and electronics experiments of Physic	CS						
	Learning Objectives							
11	To understand the concept of mechanical behavior of materials and	calculation						
L1	of same using appropriate equations.							
12	To calculate the thermodynamic quantities and physical pro-	operties of						
12	materials.							
L3	To analyze the optical and electrical properties of materials.							
L4	To observe the applications of FET and UJT.							
L5	To study the different applications of operational amplifier circuits.							
L6	To learn about Combinational Logic Circuits and Sequential Logic C	ircuits						
UNIT	(Any Twelve Experiments)	No. of Hours						
	1. Determination of Young's modulus and Poisson's ratio by							
	Elliptical fringes - Cornu's Method							
	2. Determination of Stefan's constant of radiation from a hot body							
	3. Measurement of Coefficient of linear expansion- Air wedge							
	Method							
	4. Measurement of Susceptibility of liquid - Quincke's method							
	5. B-H curve using CRO							
	6. Measurement of Magnetic Susceptibility - Guoy's method							
	7. LG Plate							
	8. Arc spectrum: Copper							
	9. Determination of Solar constant							
	10.Determination of e/m - Millikan's method							
	11. Miscibility measurements using ultrasonic diffraction method							
	12. Determination of Thickness of thin film Michelson							
	Interferometer							
	13.GM counter – Feather's analysis: Range of Beta rays							
	14. lodine absorption spectra							
	15. Molecular spectra – CN bands							
	16. Determination of Refractive index of liquids using diode Laser/							
	He – Ne Laser							
	17. Determination of Numerical Apertures and Acceptance angle of							
	optical fibers using Laser Source.							
	18. Measurement of Dielectricity - Microwave test bench							

	19.Hall Effect in Semiconductor. Determine the Hall coefficient,							
	carrier concentration and carrier mobility							
	20. Interpretation of vibrational spectra of a given materia	1						
	1. Determination of I-V Characteristics and efficiency of so	lar cell.						
	2. IC 7490 as scalar and seven segment display using IC74	47						
	3. Solving simultaneous equations – IC 741 / IC LM324							
	4. Op-Amp –Active filters: Low pass, High pass and Band pass							
	filters (Second Order) Batter worth filter							
	5. Construction of Current to Voltage and Voltage to C	Current						
	Conversion using IC 741.							
	6. Construction of second order butter worth multiple fee	edback						
	narrow band pass filter							
	7. Realization of analog to digital converter (ADC) using 4-h	oit DAC						
	and synchronous counter IC74193							
	8. Construction of square wave generator using IC 555 – S	tudy of						
	VCO							
	9. Construction of Schmidt trigger circuit using IC555 for a	a given						
	hysteresis – Application as squarer							
	10.Construction of pulse generator using the IC 555 – Application							
	as frequency divider							
	11.BCD to Excess- 3 and Excess 3 to BCD code conversion							
	12.Study of binary up / down counters - IC 7476 / IC7473							
	13.Shift register and Ring counter and Johnson count	ter- IC						
	7476/IC 7474							
	14.Study of synchronous parallel 4-bit binary up/down c	ounter						
	using IC 74193							
	15.Study of asynchronous parallel 4-bit binary up/down c	ounter						
	using IC 7493							
	16.Study of Modulus Counter							
	17. Construction of Multiplexer and Demultiplexer using IC	ls.						
	Total	17 1	1 7 1					
<u> </u>	Course Outcomes	Knowle	eage Level					
	Understand the strength of material using Young's							
1	modulus and Conduct experiments on applications of FET	K1.K2	K3,K4,K5					
	and UJT							
	Acquire knowledge of thermal behaviour of the materials							
2	2 and Analyze various parameters related to operational K1,K2,K3,K4,K							
	amplifiers							
2	Understand theoretical principles of magnetism through	V 1 V 2 V	2 K / K 5 K 6					
3	arithmetic and logical circuits using IC's	N1,N2,N	Ͽ͵៲ϚϮ͵៲ϚϿ͵ϚΟ					
	Acquire knowledge about arc spectrum and applications of							
4	laser and Acquire knowledge about Combinational Logic	K1,K2,K	3,K4,K5,K6					
	Circuits and Sequential Logic Circuits							

	Improve the analytical and observation ability in Physics									
5	Experiments and Analyze the applications of counters and	K1 K2 K3 K4 K5 K6								
5	registers									
K1 ·	K1 - Remember: K2 – Understand: K3 - Apply: K4 - Apalyze: K5 – Evaluate									
	Textbooks									
1	Practical Physics, Gupta and Kumar, Pragati Prakasan.									
0	Kit Developed for doing experiments in Physics- Inst	ruction manual, R.								
2	Srinivasan K.R Priolkar, Indian Academy of Sciences.									
2	Op-Amp and linear integrated circuit, Ramakanth A Gaykwa	ad, Eastern Economy								
3	Edition.									
4	Electronic lab manual Vol I, K ANavas, Rajath Publishing.									
5	Electronic lab manual Vol II, K ANavas, PHI eastern Econon	ny Edition.								
	Reference Books									
1	An advanced course in Practical Physics, D	Chattopadhayay,								
1.	C.R Rakshit, New Central Book Agency Pvt. Ltd									
2.	Advanced Practical Physics, S.P Singh, Pragati Prakasan									
2	A course on experiment with He-Ne Laser, R. S. Sirohi, John	Wiley & Sons (Asia)								
3.	Pvt. ltd									
4.	Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, A	yodhya Publishing								
-	Electronic Laboratory Primer a design approach, S. Poornachandra.									
5.	B. Sasikala, Wheeler Publishing, New Delhi									

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PS08	PSO9	PSO1
PSO										0
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Strong-3 Medium-2 Low-1

					IOULS	Marks		
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHDE21	ADVANCED OPTICS	Elective	3	5	25	75	100	

Pre-Requ	isites			
Knowledg	e of ray properties and wave nature of light			
	Learning Objectives			
L1	To know the concepts behind polarization and could pursue resear application aspects of laser	ch work on		
L2	To impart an extensive understanding of fiber and non-linear optics	5		
L3	To study the working of different types of LASERS			
L4	To differentiate first and second harmonic generation			
L5	Learn the principles of magneto-optic and electro-optic effects and applications	its		
UNIT	INIT Contents			
I	POLARIZATION AND DOUBLE REFRACTION Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity	15		
II	LASERS Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO2 laser – Chemical lasers – HCl laser – Semiconductor laser	15		
III	FIBER OPTICSIntroduction – Total internal reflection – The optical fiber – Glassfibers – The coherent bundle – The numerical aperture –Attenuation in optical fibers – Single and multi-mode fibers –Pulse dispersion in multimode optical fibers – Ray dispersion inmultimode step index fibers – Parabolic-index fibers – Fiber-opticsensors: precision displacement sensor – Precision vibrationsensorNON-LINEAR OPTICS	15		
IV	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation –	15		

	Optical mixing – Parametric generation of light – Self-focus	ing of							
	light								
	MAGNETO-OPTICS AND ELECTRO-OPTICS								
	Magneto-optical effects – Zeeman effect – Inverse Zeeman effect –								
	Faraday effect – Voigt effect – Cotton-mouton effect – Kerr		4 5						
V	magneto-optic effect – Electro-optical effects – Stark effect	_	15						
	Inverse stark effect – Electric double refraction – Kerr elec								
	ontic effect – Pockels electro-ontic effect								
	PROFFSSIONAL COMPONENTS								
	Expert Lectures, Online Seminars - Webinars on Industrial								
VI									
VI	Communication Skill Enhancement Social Accountability a	r allu							
	Detriction	nu							
	Fatilousiii.		75						
	I Utal	Knowl	7 J						
<u> </u>	On completion of this course, students will	KIIUWI	euge Level						
	Discuss the transverse character of light waves and								
1	different nolarization phenomenon	K1,K2	,K3,K4,K5						
	Discriminate all the fundamental processes involved in								
2	laser devices and to analyze the design and operation of	K1,K2,K3,K4,K5							
_	the devices	111,112,110,111,110							
	Demonstrate the basic configuration of a fiber optic –								
3	3 communication system and advantages								
4	Identify the properties of nonlinear interactions of light								
4	and matter								
5	5 Interpret the group of experiments which depend for their								
5	⁵ action on an applied magnetics and electric field								
K1 -	• Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K5 – Eva	luate						
	Textbooks								
1	B. B. Laud, 2017, Lasers and Non – Linear Optics, 3^{rd}	Edition	, New Age						
	International (P) Ltd.								
2	Ajoy Ghatak, 2017, Optics, 6th Edition, McGraw – Hill Educat	tion Pvt.	Ltd.						
2	William T. Silfvast, 1996, Laser Fundamentals Cambridge U	niversity	Press,						
3	New York								
4	J. Peatros, Physics of Light and Optics, a good (and free!) ele	ectronic b	ook						
5	B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-In	terscien	ce,						
	Reference Books								
1	F. S. Jenkins and H. E. White, 1981, Fundamentals of O	ptics, (4	th Edition),						
1.	McGraw – Hill International Edition.								
2.	Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VO	CH, Varle	y GmbH.						
	Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th	Edition,	Cambridge						
3.	University Press, New Delhi, 2011.		C						
4.	Y. B. Band, Light and Matter, Wiley and Sons (2006)								
5.	R. Guenther, Modern Optics, Wiley and Sons (1990)								
	Web Resources								
1.	https://www.youtube.com/watch?v=WgzynezPiyc								
2	https://www.youtube.com/watch?y=ShOWwohpW60								

3.	https://www.ukessays.com/essays/physics/fiber-optics-and-it-
	applications.php
4.	https://www.youtube.com/watch?v=0kEvr4DKGRI
5.	http://optics.byu.edu/textbook.aspx

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO / PO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
C01	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
C01	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

```
Strong-3 Medium-2 Low-1
```

					Marks			
Course Code	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHGE21	SOLID WASTE MANAGEMENT	Elective	3	5	25	75	100	

Pre-Requ	isites							
Basic know	vledge of solid waste and its type							
Learning Objectives								
L1	L1 To gain basic knowledge in solid waste management procedures							
L2	To gain industry exposure and be equipped to take up a jo	b.						
L3	To harness entrepreneurial skills.							
L4	To analyze the status of solid waste management in the ne	arby area	IS.					
L5	To sensitize the importance of healthy practices in waste n	nanagem	ents					
UNIT	Contents		No. of Hours					
	SOLID WASTE MANAGEMENT							
I	Introduction - Definition of solid waste - Types – Hazardous Resource conservation and Renewal act – Hazardous Municipal Solid waste and non-municipal solid waste.	s Waste: Waste:	15					
	SOLID WASTE CHARACTERISTICS							
II	Solid Waste Characteristics: Physical and chemical charac	teristics	15					
	- SWM hierarchy - factors affecting SW generation							
TOOLS AND EQUIPMENT								
III	I Tools and equipment - Transportation - Disposal techniques -							
	Composting and land filling technique							
	ECONOMIC DEVELOPMENT		. –					
IV	SWM for economic development and environmental prote	ction	15					
	Linking SWM and climate change and marine litter.							
V	INDUSI KIAL VISI I		15					
	SWM Industrial visit – data collection and analysis - preser	itation						
	PROFESSIONAL COMPONENTS							
VI	Expert Lectures, Unline Seminars - Webinars on Industrial	and						
V I	Communication Skill Enhancement Social Accountability a	e and						
	Patriotism	inu						
	Total		75					
	Course Outcomes	Knowle	edge Level					
CO	On completion of this course, students will							
1	Gained knowledge in solid waste management	K1,K2	K3,K4,K5					
2	Equipped to take up related job by gaining industry	174 IZO						
Z	exposure	K1,K2	К3,К4,К5					
3	Develop entrepreneurial skills	K1,K2,K	3,K4,K5,K6					
4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K1,K2,K	3,K4,K5,K6					

Ę	Adequately sensitized in managing solid wastes in and	K1 K2 K3 K4 K5 K6								
5	around his/her locality	K1,K2,K3,K4,K3,K0								
K1 ·	- Remember; K2 – Understand; K3 - Apply; K4 - Analyze;	K5 – Evaluate								
	Textbooks									
1	Handbook of Solid Waste Management /Second Edition, George Tchobanoglous,									
	McGraw Hill (2002).									
Prospects and Perspectives of Solid Waste Management, Prof. B BHosett,										
L	Age International (P) Ltd (2006).									
2	Solid and Hazardous Waste Management, Second Edit	tion, M.N Rao, BS								
5	Publications / BSPBooks (.(2020									
4	Integrated Solid Waste Management Engineering Principle	es and Management,								
4	Tchobanoglous, McGraw Hill (2014).									
	Solid Waste Management (SWM), Vasudevan Rajaram, PHI	learning private								
5	limited, 2016									
	Reference Books									
1.Municipal Solid Waste Management, Christian Ludwig, Samuel Stucki, S Hellweg, Springer Berlin Heisenberg, 2012										
							2	tific Documentation		
Ζ.	Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2									
2	Solid Waste Techobanoglous George; Kreith, Frank McGr	aw Hill Publication,								
3.	New Delhi 2002, ISBN 9780071356237									
Λ	Environmental Studies Manjunath D. L. Pearson Education	on Publication, New								
4.	Delhi, 20061SBN-I3: 978-8131709122									
	Solid Waste Management Sasikumar K. PHI learning, New I	Delhi, 2009 ISBN								
5.	8120338693									
	Web Resources									
	https://www.meripustak.com/Integrated-Solid-Waste-Ma	nagement-								
1.	Engineering-Principles-And-Management-Issues-125648									
2	https://testbook.com/learn/environmental-engineering-set	olid-								
Ζ.	waste-management/									
	https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCR	AR IsA-								
3.	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXj									
	J1iACq30KofoaAmFsEALw_wcB									
4.	https://images.app.goo.gl/tYiW2gUPfS2cxdD28									
5.	https://amzn.eu/d/5VUSTDI									

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO /	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010
РО										
C01	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Strong-3 Medium-2 Low-1

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
C01	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Course Code					Marks			
	Course Title	Category	Credits	Hours	CIAE	External	Total	
23PPHSE21	MEDICAL PHYSICS	SEC	2	2	25	75	100	

Pre-Requi	sites							
Fundamen	tals of physiological concepts, Basics of instruments principle,							
	Learning Objectives							
L1	To understand the major applications of Physics to Medicine							
12	To study the aid of different medical devices such as X-ray machines, gamma							
L2	camera, accelerator and nuclear magnetic resonance.							
	To outline the principles of Physics of different medical radiation de	evices and						
L3	their modern advances, especially in medical radiation therapy and	different						
	applications in medical physics.							
L4	To introduce the ideas of Radiography.							
L5	To form a good base for further studies like research.							
UNIT	Contents	No. of Hours						
	X-RAYS AND TRANSDUCERS							
	Electromagnetic Spectrum – Production of X-Rays – X-Ray							
I	Spectrum –Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes –	6						
	Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric							
	transducers – Photo voltaic cells – photo emissive cells –							
	Photoconductive cells– piezoelectric transducer							
	BLOOD PRESSURE MEASUREMENTS							
	Introduction – Sphygmomanometer – Measurement of heart rate							
11	- basic principles of electrocardiogram (ECG) -Basic principles of	6						
	electro-neurography (ENG) – Basic principles of magnetic							
	PADIATION PHYSICS							
	Radiation Units – Exposure – Absorbed Dose – Rad to Grav – Kera							
	Relative Biological Effectiveness –Effective Dose – Sievert (Sv) –							
III	Inverse Square Law – Interaction of radiation with Matter – Linear	6						
	Attenuation Coefficient – Radiation Detectors – Thimble Chamber –							
	Condenser Chambers – Geiger Counter – Scintillation Counter							
	MEDICAL IMAGING PHYSICS							
	Radiological Imaging – Radiography – Filters – Grids – Cassette –							
	X-Ray Film – Film processing – Fluoroscopy – Computed							
IV	Tomography Scanner – Principal Function – Display –							
	Mammography – Ultrasound Imaging – Magnetic Resonance							
	Imaging – Thyroid Uptake System – Gamma Camera (Only							
	Principle, Function and display)							

	RADIATION PROTECTION									
	Principles of Radiation Protection – Protective Mat	erials –								
V	Radiation Effects – Somatic – Genetic Stochastic and Deter	ministic	6							
	Effect – Personal Monitoring Devices – TLD Film Badge	– Pocket								
	Dosimeter PROFESSIONAL COMPONENTS									
	FROFESSIONAL COMFONENTS									
VI	Expert Lectures, Unline Seminars - Webinars on Industria	l lo and								
VI	Communication Skill Enhancement, Social Accountability and									
	Communication Skill Enhancement, Social Accountability and									
	Total		30							
	Course Outcomes	Knowl	edge Level							
CO	On completion of this course, students will		0							
	Learn the fundamentals, production and applications of									
1	X-rays.	K1,K2	,K3,K4,K5							
	Understand the basics of blood pressure measurements.									
2	Learn about sphygmomanometer, EGC, ENG and basic	K1,K2	,K3,K4,K5							
	principles of MRI.									
3	Apply knowledge on Radiation Physics	K1,K2,K	3,K4,K5,K6							
4	Analyze Radiological imaging and filters K1,K2,K3,K4,K5,K									
5 Assess the principles of radiation protection K1,K2,K										
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate										
	Textbooks									
1	Dr.K.Thayalan <i>,Basic Radiological Physics,</i> Jayapee Brothers Medical									
-	¹ Pvt. Ltd. New Delhi, 2003.									
2	Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology									
L	<i>Lippincot</i> Williams and Wilkins, 1990.									
3	FM Khan, Physics of Radiation Therapy, William and Wilkin	s, 3rd ed,	2003.							
Λ	D. J. Dewhurst, An Introduction to Biomedical Instrumenta	tion, 1st	ed, Elsevier							
4	Science, 2014.									
5	R.S. Khandpur, Hand Book of Biomedical Instrumentations,	1st ed, TM	/IG, New							
5	Delhi, 2005.									
	Reference Books									
1	Muhammad Maqbool, An Introduction to Medical Physic	<i>cs</i> , 1st e	d, Springer							
1	International Publishing, 2017.									
2	Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st ed	d, Charles	University,							
۷.	Karolinum Press, 2018									
2	Anders Brahme, Comprehensive Biomedical Physics, Volum	ne 1, 1st (ed, Elsevier							
э.	Science, 2014.									
Λ	K. Venkata Ram, Bio-Medical Electronics and Instrumentation	tion, 1st e	ed, Galgotia							
4.	Publications, New Delhi, 2001.									
Ę	John R. Cameron and James G. Skofronick, 2009, Medical Pl	hysics, Jol	nn Wiley							
J.	Interscience Publication, Canada, 2nd edition.									
	Web Resources									
1.	https:nptel.ac.in/courses/108/103/108103157/									
2.	https://www.studocu.com/en/course/university-of-techn	ology-								

	sydney/medical-devices-and-diagnostics/225692
3.	https://www.technicalsymposium.com/alllecturenotes biomed.html
Λ	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-
4.	by-deepraj-adhikary/78
5.	https://www.modulight.com/applications-medical/

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO / PO	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

CO /	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PS07	PS08	PSO9	PSO1
PSO										0
C01	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Strong-3 Medium-2 Low-1